Business Statistics and Mathematics Solved Paper 2011, Punjab University, BCOM, ADC I

Business Statistics and Mathematics Solved Paper 2011, Punjab University, BCOM, ADC I

In this Post, we are going to discuss the Paper of Business Statistics and Mathematics Solved Paper 2011Punjab University, BCOM, ADCI in which Measures of Central TendencyMeasures of DispersionCorrelation & Regression, Index Numbers, Matrix, Arithmetic Progression, Geometric Progression, Simultaneous Linear Equations, Annuity, Quadratic Equation is discussed and solved. Solved Paper 2007 Punjab University , Solved Paper 2008Solved Paper 2009 and Solved Paper 2010 have already posted.

Table of Contents

Business Statistics and Mathematics Solved Paper 2011, Punjab University, BCOM, ADC I

Section I Business Statistics

Q.1 Required: Obtain Mean, Median and Coefficient of Variation

ClassesFrequencyClassesFrequency
12.5—17.5237.5—42.54
17.5—22.52242.5—47.56
22.5—27.51947.5—52.51
27.5—32.51452.5—57.51
32.5—37.53  

Solution

ClassesFrequency (f)Xfxfx²C.f
12.5—17.5215304502
17.5—22.52220440880024
22.5—27.519254751187543
27.5—32.514304201260057
32.5—37.5335105367560
37.5—42.5440160640064
42.5—47.56452701215070
47.5—52.515050250071
52.5—57.515555302572
Sum72 200561475 
 ∑f= ∑fx=∑fx²= 

\[ \left( \mathbf{a} \right)\mathbf{\ A.M\ }\overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum fx}}{\mathbf{\sum f}}\mathbf{= \ }\frac{\mathbf{2005}}{\mathbf{72}}\mathbf{= 27.84\ }\ \]

Selection of class for median

\[ \frac{\mathbf{n}}{\mathbf{2}}\mathbf{=}\frac{\mathbf{72}}{\mathbf{2}}\mathbf{= 36\ falls\ in\ c.f\ of\ 43\ so\ model\ class\ is\ }\mathbf{22.5—27.5}\ \]

\[ \left( \mathbf{b} \right)\mathbf{Median = L + \ }\frac{\mathbf{h}}{\mathbf{f}}\left( \frac{\mathbf{n}}{\mathbf{2}}\mathbf{- \ C} \right)\mathbf{= 22.5 + \ }\frac{\mathbf{5}}{\mathbf{19}}\left( \mathbf{36 – \ 24} \right)\mathbf{= 25.65}\ \]

\[ \left( \mathbf{c} \right)\mathbf{Coefficient\ of\ Variation\ C.V = \ }\left( \frac{\mathbf{S.D}}{\mathbf{Mean}} \right)\mathbf{100}\ \]

\[ \mathbf{S.D =}\sqrt{\left\lbrack \frac{\mathbf{\sum f}\mathbf{x}^{\mathbf{2}}}{\mathbf{\sum f}}\mathbf{- \ }\left( \frac{\mathbf{\sum fx}}{\mathbf{\sum f}} \right)^{\mathbf{2}} \right\rbrack}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{61475}}{\mathbf{72}}\mathbf{- \ }\left( \frac{\mathbf{2005}}{\mathbf{72}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{S.D =}\sqrt{\left\lbrack \mathbf{853.819 – \ 775.467} \right\rbrack}\ \]

\[ \textbf{S.D = 8.85} \]

\[ \mathbf{Coefficient\ of\ Variation\ C.V = \ }\left( \frac{\mathbf{8.85}}{\mathbf{27.84}} \right)\mathbf{100 = 31.79\%}\ \]

Q.2

X:        5          6          7          8          9          10        11        12        13        14        15

Y:        9          7          10        3          13        11        14        10        14        12        18

Required:  Calculate coefficient of correlation and also the line of regression y on x

Solution:

Solution: Correlation Coefficient

Formula:

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

S/NoXYXY
159452581
267423649
37107049100
48324649
591311781169
61011110100121
71114154121196
81210120144100
91314182169196
101412168196144
111518270225324
     
SUM110121130212101489
 ∑X =∑Y =∑XY =∑X² =∑Y² =

\[ \overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum X}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{110}}{\mathbf{11}}\mathbf{= 10\ ,\ }\overline{\mathbf{Y}}\mathbf{=}\frac{\mathbf{\sum Y}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{121}}{\mathbf{11}}\mathbf{= 11\ }\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{x}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{1210}}{\mathbf{11}}\mathbf{- \ }\left( \mathbf{10} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{110 – 100}}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{10}}\ \]

\[ \mathbf{Sx = 3.162}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{y}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{1489}}{\mathbf{11}}\mathbf{- \ }\left( \mathbf{11} \right)^{\mathbf{2}} \right\rbrack}\mathbf{\ }\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{135.36 – 121}}\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{14.36}}\ \]

\[ \mathbf{Sy = 3.78}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{1302}}{\mathbf{11}}\mathbf{- \ }\left( \mathbf{10} \right)\left( \mathbf{11} \right)}{\left( \mathbf{3.162} \right)\mathbf{\times (3.78)}}\ \]

\[ \mathbf{r =}\frac{\mathbf{118.36\ –\ 110}}{\mathbf{11.95}}\ \]

\[ \mathbf{r =}\frac{\mathbf{8.36}}{\mathbf{55.95}}\ \]

\[ \mathbf{r = 0.7}) \textbf{(Positive Correlation)} \]

\[ \textbf{Line of Regression Y on X} \]

\[ \widehat{\mathbf{Y}}\mathbf{= a + bx}\ \]

Where:

\[ \mathbf{a =}\overline{\mathbf{Y}}\mathbf{- b}\overline{\mathbf{X}}\]

\[ b_{yx}=r_{xy}\times\frac{Sy}{Sx} \]

\[ b_{yx}=0.7\times\frac{3.78}{3.162}=0.8368 \]

\[ \mathbf{a = 11 – (0.8368)(10)}\ \]

\[ \mathbf{a = 2.632}\ \]

\[ \widehat{\mathbf{Y}}\mathbf{= a + bx}\ \]

\[ \widehat{\mathbf{Y}}\mathbf{= 2.632 + 0.8368x}\ \]

Q.3. A population consists of six numbers 3, 6, 9, 12 and 18. Consider all the possible samples of size 3 which can be drawn without replacement from this population. Calculate:

(i) The Mean of Population

(ii) The Standard Deviation of Population

(iii) The Mean of the Sampling Distribution of Means

(iv) The Standard Error

Solution:

Verification Formulas:

\[ \left( \mathbf{i} \right)\mathbf{\ \mu =}\mathbf{\mu}_{\overline{\mathbf{x}}}\ \]

\[ \left( \mathbf{ii} \right){\mathbf{\ \sigma}\overline{\mathbf{x}}}^{\mathbf{2}}\mathbf{=}\frac{\mathbf{\sigma ²}}{\mathbf{n}}\left\lbrack \frac{\mathbf{N – n}}{\mathbf{N – 1}} \right\rbrack\ \]

\[ \left( \mathbf{iii} \right)\mathbf{\ \sigma}\overline{\mathbf{x}}\mathbf{=}\frac{\mathbf{\sigma ²}}{\sqrt{\mathbf{n}}}\sqrt{\left\lbrack \frac{\mathbf{N – n}}{\mathbf{N – 1}} \right\rbrack}\mathbf{\ }\ \]

Population = 3, 6, 9, 12, 18

Population Size N = 5

Sample size n = 3

\[ \mathbf{Sample\ Space\ \eta}\left( \mathbf{s} \right)\mathbf{=}\begin{pmatrix}\mathbf{N} \\\mathbf{C} \\\mathbf{r} \\\end{pmatrix}\mathbf{=}\begin{pmatrix}\mathbf{5} \\\mathbf{C} \\\mathbf{3} \\\end{pmatrix}\mathbf{= 10}\ \]

S/NoSamplesSum of SamplesMean of Samples
13, 6, 9186
23, 6, 12217
33, 6, 18279
43, 9, 12248
53, 9, 183010
63, 12, 183311
76, 9, 12279
86, 9, 183311
96, 12, 183612
109, 12, 183913
Sampling Distribution of Mean of all Samples  
ffX̅fX̅²
61636
71749
81864
9218162
10110100
11222242
12112144
13113169
    
    
 1096966
 ∑f =∑fX̅ =∑fX̅²=

Mean, Variance & S.D of Sampling Distribution

\[ µ\overline x\;\frac{\sum f\overline x}{\sum f}=\frac{96}{10}=9.6 \]

\[ \sigma^2\overline x\;=\frac{\sum f\overline x^2}{\sum f}-\left(\frac{\sum f\overline x}{\sum f}\right)^2 \]

\[ \mathbf{\sigma}{\overline{\mathbf{x}}}^{\mathbf{2}}\mathbf{=}\frac{\mathbf{966}}{\mathbf{10}}\mathbf{-}\left( \mathbf{9.6} \right)^{\mathbf{2}}\ \]

\[ \mathbf{\sigma}{\overline{\mathbf{x}}}^{\mathbf{2}}\mathbf{= 96.6 – 92.16}\ \]

\[ \mathbf{\sigma}{\overline{\mathbf{x}}}^{\mathbf{2}}\mathbf{= 4.44}\ \]

\[ \sigma\overline x\;=\sqrt{\frac{\sum f\overline x^2}{\sum f}-\left(\frac{\sum f\overline x}{\sum f}\right)^2} \]

\[ \sigma\overline x\;=\sqrt{4.44} \]

\[ \mathbf{\sigma}\overline{\mathbf{x}}\mathbf{= 2.107}\ \]

Mean, Variance & S.D of Population

X
39
636
981
12144
18324
 
48594
∑X =∑X² =

\[ \mathbf{Mean\ }\overline{\mathbf{X}}\mathbf{= \ }\frac{\mathbf{\sum X}}{\mathbf{N}}\mathbf{=}\frac{\mathbf{48}}{\mathbf{5}}\mathbf{= 9.6}\ \]

\[ \mathbf{\sigma ² =}\frac{\mathbf{\sum X²}}{\mathbf{N}}\mathbf{-}\left( \frac{\mathbf{\sum X}}{\mathbf{N}} \right)^{\mathbf{2}}\ \]

\[ \mathbf{\sigma ² =}\frac{\mathbf{594}}{\mathbf{5}}\mathbf{-}\left( \mathbf{9.6} \right)^{\mathbf{2}}\ \]

\[ \mathbf{\sigma}^{\mathbf{2}}\mathbf{= 118.8 – 92.16}\ \]

\[ \mathbf{\sigma ² = 26.64}\ \]

\[ \mathbf{\sigma =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{X}^{\mathbf{2}}}{\mathbf{N}}\mathbf{-}\left( \frac{\mathbf{\sum X}}{\mathbf{N}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{\sigma =}\sqrt{\mathbf{26.64}}\ \]

\[ \mathbf{\sigma = 5.161}\ \]

Verification:

\[ \left( \mathbf{i} \right)\mathbf{\ \mu =}\mathbf{\mu}_{\overline{\mathbf{x}}}\ \]

\[ \mathbf{9.6 = 9.6}\ \]

\[ \left( \mathbf{ii} \right){\mathbf{\ \sigma}\overline{\mathbf{x}}}^{\mathbf{2}}\mathbf{=}\frac{\mathbf{\sigma ²}}{\mathbf{n}}\left\lbrack \frac{\mathbf{N – n}}{\mathbf{N – 1}} \right\rbrack\ \]

\[ \mathbf{4.44}\mathbf{=}\frac{\mathbf{26.64}}{\mathbf{3}}\left\lbrack \frac{\mathbf{5 – 3}}{\mathbf{5 – 1}} \right\rbrack\ \]

\[ \mathbf{4.44}\mathbf{= 4.44}\ \]

\[ \left( \mathbf{iii} \right)\mathbf{\ \sigma}\overline{\mathbf{x}}\mathbf{=}\frac{\mathbf{\sigma}}{\sqrt{\mathbf{n}}}\sqrt{\left\lbrack \frac{\mathbf{N – n}}{\mathbf{N – 1}} \right\rbrack}\mathbf{\ }\ \]

\[ \mathbf{2.107 =}\frac{\mathbf{5.161}}{\sqrt{\mathbf{3}}}\sqrt{\left\lbrack \frac{\mathbf{5 – 3}}{\mathbf{5 – 1}} \right\rbrack}\mathbf{\ }\ \]

\[ \mathbf{2.107 = 2.107}\ \]

Results:

(i) The Mean of Population = 9.6

(ii) The Standard Deviation of Population = 5.161

(iii) The Mean of the Sampling Distribution of Means =9.6

(iv) The Standard Error = 2.107

Q.4. The following data gives the prices and quantities of various commodities for the year 1995 and 2002:

CommodityPrices (Rs. Per Quintal)Quantities (1000 Per Quintal)
1995200219952002
A6080270290
B4045125140
C2025130140
D5570270350

Calculate weighted index number of prices for the year 2002 by taking the year 1995 as base year and using formulae recommended by Laspeyre, Fisher, Paasche’s and Marshall

Solution:

Commodity19952002
Price PoQuantity q0Price P1Quantity q1 \[ \mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{o}}\ \]  \[ \mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}\ \]  \[ \mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{o}}\ \]  \[ \mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{1}}\ \]
A602708029016200232002160017400
B40125451405000630056255600
C20130251402600350032502800
D552707035014850245001890019250
     38650575004937545050
      \[ \mathbf{\sum}\mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{o}}\ \] \[ \mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}\ \] \[ \mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{o}}\ \] \[ \mathbf{\sum}\mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{1}}\ \]

\[ \left( \mathbf{i} \right)\mathbf{Laspeyr}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index}\mathbf{\ 2002}\mathbf{=}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{0}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{0}}}\mathbf{\times \ 100}\ \]

\[ \mathbf{Laspeyr}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index}\mathbf{\ 2002}\mathbf{=}\frac{\mathbf{49375}}{\mathbf{38650}}\mathbf{\ \times \ 100 = \ 127.75}\ \]

\[ \left( \mathbf{ii} \right)\mathbf{Paasch}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index\ 2002}\mathbf{=}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{1}}}\mathbf{\times \ 100}\ \]

\[ \mathbf{Paasch}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index\ 2002}\mathbf{=}\frac{\mathbf{57500}}{\mathbf{45050}}\mathbf{\times \ 100 = 127.64}\ \]

\[ \left( \mathbf{iii} \right)\mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 =}\sqrt{\mathbf{L \times P}}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 =}\sqrt{\mathbf{127.75 \times 127.64}}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 = 127.69}\ \]

\[ \left( \mathbf{iv} \right)\mathbf{\ Marsha}\mathbf{l}^{\mathbf{‘}}\mathbf{s\ Index\ 2002 =}\left( \frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{0}}\mathbf{+ \sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{0}}\mathbf{+ \sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{1}}} \right)\mathbf{\times 100}\ \]

\[ \]

\[ \mathbf{Marsha}\mathbf{l}^{\mathbf{‘}}\mathbf{s\ Index\ 2002 =}\left( \frac{\mathbf{49375 + 57500}}{\mathbf{38650 + 45050}} \right)\mathbf{\times 100}\ \]

\[ \mathbf{Marsha}\mathbf{l}^{\mathbf{‘}}\mathbf{s\ Index\ 2002 =}\left( \frac{\mathbf{106875}}{\mathbf{83700}} \right)\mathbf{\times 100}\ \]

\[ \mathbf{Marsha}\mathbf{l}^{\mathbf{‘}}\mathbf{s\ Index\ 2002 = 127.69}\ \]

Section I Business Mathematics

Q.5 If:

\[\textbf{ A =} \begin{bmatrix}\mathbf{1} & \mathbf{3} & \mathbf{2} \\\mathbf{3} & \mathbf{2} & \mathbf{0} \\\mathbf{4} & \mathbf{5} & \mathbf{6} \\\end{bmatrix}\mathbf{\ \&\ B =}\begin{bmatrix}\mathbf{- 2} & \mathbf{5} & \mathbf{4} \\\mathbf{0} & \mathbf{3} & \mathbf{- 5} \\\mathbf{- 1} & \mathbf{4} & \mathbf{2} \\\end{bmatrix} \]

Calculate (i)A – 3B (ii) AB

Solution

\[ \mathbf{3}\mathbf{B =}\begin{bmatrix}\mathbf{- 6} & \mathbf{15} & \mathbf{12} \\\mathbf{0} & \mathbf{9} & \mathbf{- 15} \\\mathbf{- 3} & \mathbf{12} & \mathbf{6} \\\end{bmatrix}\mathbf{,\ }\mathbf{A – \ 3}\mathbf{B =}\begin{bmatrix}\mathbf{1 + 6} & \mathbf{3 – 15} & \mathbf{2 – 12} \\\mathbf{3 – 0} & \mathbf{2 – 9} & \mathbf{0 + 15} \\\mathbf{4 + 3} & \mathbf{5 – 12} & \mathbf{6 – 6} \\\end{bmatrix}\ \]

\[ \mathbf{A – \ 3}\mathbf{B =}\begin{bmatrix}\mathbf{7} & \mathbf{- 12} & \mathbf{- 10} \\\mathbf{3} & \mathbf{- 7} & \mathbf{15} \\\mathbf{7} & \mathbf{- 7} & \mathbf{0} \\\end{bmatrix}\ \]

\[ \textbf{(ii)} \mathbf{AB = \ }\begin{bmatrix}\mathbf{1( – 2) + 3 \times 0 + 2( – 1)} & \mathbf{1 \times 5 + 3 \times 3 + 2 \times 4} & \mathbf{1 \times 4 + 3( – 5) + 2 \times 2} \\\mathbf{3( – 2) + 2 \times 0 + 0( – 1)} & \mathbf{3 \times 5 + 2 \times 3 + 0 \times 4} & \mathbf{3 \times 4 + 2( – 5) + 0 \times 2} \\\mathbf{4( – 2) + 5 \times 0 + 6( – 1)} & \mathbf{4 \times 5 + 5 \times 3 + 6 \times 4} & \mathbf{4 \times 4 + 5( – 5) + 6 \times 2} \\\end{bmatrix}\ \]

\[ \mathbf{AB = \ }\begin{bmatrix}\mathbf{- 2 + 0 – 2} & \mathbf{5 + 9 + 8} & \mathbf{4 – 15 + 4} \\\mathbf{- 6 + 0 – 0} & \mathbf{15 + 6 + 0} & \mathbf{12 – 10 + 0} \\\mathbf{- 8 + 0 – 6} & \mathbf{20 + 15 + 24} & \mathbf{16 – 25 + 12} \\\end{bmatrix}\ \]

\[ \mathbf{AB = \ }\begin{bmatrix}\mathbf{- 4} & \mathbf{22} & \mathbf{- 7} \\\mathbf{- 6} & \mathbf{21} & \mathbf{2} \\\mathbf{- 14} & \mathbf{59} & \mathbf{3} \\\end{bmatrix}\ \]

Q.6(a) Solve the following

\[ \mathbf{x}\mathbf{²}\mathbf{+ 5}\mathbf{x = 50}\ \]

Solution

\[ \mathbf{x}\mathbf{²}\mathbf{+ 5}\mathbf{x – \ 50}\ \]

\[ \mathbf{x =}\frac{\mathbf{- b \pm}\sqrt{\mathbf{b}^{\mathbf{2}}\mathbf{- 4}\mathbf{ac}}}{\mathbf{2}\mathbf{a}}\mathbf{\ where\ a = 1,\ b = \ 5\ \&\ c = \ – 50}\ \]

\[ \mathbf{x =}\frac{\mathbf{( – 5) \pm}\sqrt{\left( \mathbf{5} \right)^{\mathbf{2}}\mathbf{- 4(1)( – 50)}}}{\mathbf{2(1)}}\ \]

\[ \mathbf{x =}\frac{\mathbf{- 5 \pm}\sqrt{\mathbf{25}\mathbf{+ 200}}}{\mathbf{2}}\ \]

\[ \mathbf{x =}\frac{\mathbf{- 5 \pm}\sqrt{\mathbf{225}}}{\mathbf{2}}\ \]

\[ \mathbf{x =}\frac{\mathbf{- 5 \pm 15}}{\mathbf{2}}\ \]

\[ \mathbf{x =}\frac{\mathbf{- 5 + 15}}{\mathbf{2}}\mathbf{=}\frac{\mathbf{10}}{\mathbf{2}}\mathbf{= 5}\ \]

\[ \mathbf{x =}\frac{\mathbf{- 5 – 15}}{\mathbf{12}}\mathbf{=}\frac{\mathbf{- 20}}{\mathbf{2}}\mathbf{= – 10}\ \]

(b) The sum of two consecutive even integers is 66. Find the numbers.

Solution

x + x+2 = 66

2x + 2 = 66

2x = 66 – 2

2x = 64

x = 64/2 = 32

First Integer = x = 32

Second Integer = x + 2 = 32+ 2 = 34

Sum of two integers is 66

32 + 34 = 66

Q.7 (a) The 54th and 4th terms of an A.P are -61 and 64 respectively. Show that the common difference is -2.5 and 23rd term is 16.5.

Solution:

Α54 = -61, α4 = 64

αn = α1 + (n – 1)d

α54 = α1 + (54 – 1)d

-61 = α1 + 53d………….(i)

αn = α1 + (n – 1)d

α4 = α1 + (4 – 1)d

64 = α1 + 3d………….(ii)

Subtract equation i & ii

-61 = α1 + 53d ………….(i)

±64 = ±α1 ± 3d ………….(ii)

-125 = 50d

50d = -125

\[ \mathbf{d}\mathbf{= \ }\frac{\mathbf{- 125}}{\mathbf{50}}\mathbf{=}\mathbf{-}\mathbf{\ 2.5}\ \]

Now we will find the value of α1 by putting the value of d in any equation

64 = α1 + 3d ………….(ii)

64 = α1 + 3(-2.5)

64 = α1 – 7.5

α1 = 64 + 7.5

α1 = 71.5

Hence

α 23 = α1 + (23 – 1)d

α 23 = 71.5 + (22)(-2.5)

α 23 = 71.5 – 55 α 23= 16.5

(b) Show that the sum of the series 0.53 + 0.0053 +………0.000053 + to infinity is 53/99.Solution

\[ \mathbf{S\infty =}\frac{\mathbf{a}\mathbf{1}}{\mathbf{1 – r}}\mathbf{\ where\ a}\mathbf{1 = 0.53\ \&\ r = 0.0,\ so:}\ \]

\[ \mathbf{S\infty =}\frac{\mathbf{a}\mathbf{1}}{\mathbf{1 – r}}\mathbf{=}\frac{\mathbf{0.53}}{\mathbf{1 – 0.01}}\mathbf{=}\frac{\mathbf{0.53}}{\mathbf{0.99}}\mathbf{=}\frac{\mathbf{0.53}}{\mathbf{0.99}}\mathbf{=}\frac{\mathbf{53}}{\mathbf{99}}\mathbf{\ }\ \]

Q.8 (a) A property changed hands 3 times and at each time the loss to the seller was 10%. If in the last transaction the loss was Rs. 202.50. Find out the original value of the property.

Solution:

Let the original price of the property = 100

10% loss on first selling = 10

Remaining Value = (100 – 10 = 90)

10% loss on second selling = 9

Remaining Value = (90 – 9 = 81)

10% loss on third selling = 8.10

Remaining Value = (81 – 8.10 = 72.9)

If the loss is 202.50, the original price will be:

\[ \mathbf{Original\ Price = \ }\frac{\mathbf{202.50\ \times \ 100}}{\mathbf{8.10}}\mathbf{= Rs = 2500}\ \]

(b) The difference between the simple and compound interest on a certain sum is Rs. 31 for three years at 10% p.a. Find out the sum.

Solution

Assumed Principal Value = 100, n or N = 3, I or i = 5% = 0.05, Difference = 61

S.I = PIN

S.I = 100×0.10×3 = 30

\[ {\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{=}\mathbf{P}\mathbf{(}\mathbf{1}\mathbf{+}\mathbf{i}\mathbf{)}}^{\mathbf{n}}\mathbf{- p}\ \]

\[ {\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{=}\mathbf{100}\mathbf{(}\mathbf{1}\mathbf{+}\mathbf{0}\mathbf{.}\mathbf{10}\mathbf{)}}^{\mathbf{3}}\mathbf{- 100}\ \]

\[ \mathbf{C}\mathbf{.}\mathbf{I}\mathbf{=}\mathbf{100}\mathbf{(}\mathbf{1}\mathbf{.}\mathbf{331}\mathbf{)}\mathbf{-}\mathbf{100}\ \]

\[ \mathbf{C}\mathbf{.}\mathbf{I}\mathbf{=}\mathbf{133.1 – 100}\ \]

\[ \mathbf{C}\mathbf{.}\mathbf{I}\mathbf{=}\mathbf{33.1}\ \]

Difference between Simple & Compound Interest = 33.1 – 30 = 3.1

\[ \mathbf{Principal}\mathbf{= \ }\frac{\mathbf{100}\mathbf{\ }\mathbf{x}\mathbf{\ }\mathbf{31}}{\mathbf{3.1}}\mathbf{=}\mathbf{Rs}\mathbf{.}\mathbf{1000}\ \]

Sum in Simple Interest = Principal Amount + S.I = 1000 + 30 = 1030

Sum in Compound Interest = Principal Amount + C.I = 1000 + 33.1 = 1033.1

Business Statistics & Mathematics, Solved Paper 2010, Punjab University, BCOM, ADCI

Business Statistics & Mathematics, Solved Paper 2009, Punjab University, BCOM, ADCI

Business Mathematics and Statistics, Solved Paper 2008, Punjab University, BCOM,ADCI

Business Mathematics and Statistics, Solved Paper 2007, Punjab University, BCOM,ADCI

Introduction to Statistics Basic Important Concepts

Measures of Central Tendency, Arithmetic Mean, Median, Mode, Harmonic, Geometric Mean

Correlation Coefficient, Properties, Types, Important Formulas for Correlation Coefficient

Leave a Comment

Your email address will not be published. Required fields are marked *