Business Statistics and Mathematics, Solved Paper 2010, Punjab University, BCOM,ADCI

Business Statistics and Mathematics, Solved Paper 2010

Here, we are going to solve the Paper of Business Statistics and Mathematics, Solved Paper 2010, Punjab University, BCOM, ADCI in which Measures of Central TendencyMeasures of DispersionCorrelation & Regression, Index Numbers, Matrix, Arithmetic Progression, Geometric Progression, Simultaneous Linear Equations, Annuity, Quadratic Equation is discussed and solved. Solved Paper 2007 Punjab University , Solved Paper 2008 and Solved Paper 2009 have already posted.

Business Statistics and Mathematics, Solved Paper 2010, Punjab University, BCOM,ADCI

Section I Business Statistics

Q.1 Calculate A.M, Harmonic Mean, Standard Deviation and Coefficient of Variation

WagesNo of WorkersWagesNo of Workers
117—12413159—16681
124—13117166—17365
131—13833173—18055
138—14547180—18740
145—15256187—19420
152—15973  

Solution

WagesNo of Workers (f)Xfxf/xfx²
117—12413120.51566.50.107883817188763.25
124—13117127.52167.50.133333333276356.25
131—13833134.54438.50.24535316596978.25
138—14547141.56650.50.332155477941045.75
145—15256148.583160.3771043771234926
152—15973155.511351.50.4694533761765158.25
159—16681162.513162.50.4984615382138906.25
166—17365169.511017.50.3834808261867466.25
173—18055176.59707.50.3116147311713373.75
180—18740183.573400.2179836511346890
187—19420190.538100.104986877725805
Sum500 795283.18181116412795669
 ∑f= ∑fx=∑f/x=∑fx²=

\[ \left( \mathbf{a} \right)\mathbf{\ A.M\ }\overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum fx}}{\mathbf{\sum f}}\mathbf{= \ }\frac{\mathbf{79528}}{\mathbf{500}}\mathbf{= 159.056\ }\ \]

\[ \left( \mathbf{b} \right)\mathbf{\ Harmonic\ Mean\ H.M =}\frac{\mathbf{\sum f}}{\mathbf{\sum(}\frac{\mathbf{f}}{\mathbf{X}}\mathbf{)}}\mathbf{= \ }\frac{\mathbf{500}}{\mathbf{3.181811164}}\mathbf{= 157.143\ }\ \]

\[ \left( \mathbf{c} \right)\mathbf{Coefficient\ of\ Variation\ C.V = \ }\left( \frac{\mathbf{S.D}}{\mathbf{Mean}} \right)\mathbf{100}\ \]

\[ \mathbf{S.D =}\sqrt{\left\lbrack \frac{\mathbf{\sum f}\mathbf{x}^{\mathbf{2}}}{\mathbf{\sum f}}\mathbf{- \ }\left( \frac{\mathbf{\sum fx}}{\mathbf{\sum f}} \right)^{\mathbf{2}} \right\rbrack}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{12795669}}{\mathbf{500}}\mathbf{- \ }\left( \frac{\mathbf{79528}}{\mathbf{500}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{S.D =}\sqrt{\left\lbrack \mathbf{25591.338 – \ 25298.82} \right\rbrack}\ \]

\[ \textbf{S.D = 17.10} \]

\[ \mathbf{Coefficient\ of\ Variation\ C.V = \ }\left( \frac{\mathbf{17.10}}{\mathbf{159.056}} \right)\mathbf{100 = 10.75\%}\ \]

Q.2

X:        16, 72, 73, 63. 83. 80. 66 66. 74, 62

Y:        40, 52, 43, 49, 61, 58, 44, 58, 50, 45

Required: Calculate coefficient of correlation and comment on the answers.

Solution:

Formula:

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

S/NoXYXY
116406402561600
27252374451842704
37343313953291849
46349308739692401
58361506368893721
68058464064003364
76644290443561936
86658382843563364
97450370054762500
106245279038442025
SUM655500335354605925464
 ∑X =∑Y =∑XY =∑X² =∑Y² =

\[ \overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum X}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{655}}{\mathbf{10}}\mathbf{= 65.5\ ,\ }\overline{\mathbf{Y}}\mathbf{=}\frac{\mathbf{\sum Y}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{500}}{\mathbf{10}}\mathbf{= 50\ }\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{x}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{46059}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{65.5} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{4605.9 – 4290.25}}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{315.65}}\ \]

\[ \mathbf{Sx = 17.76}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{y}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{25464}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{50} \right)^{\mathbf{2}} \right\rbrack}\mathbf{\ }\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{2546.4 – 2500}}\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{46.4}}\ \]

\[ \mathbf{Sy = 6.811}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{33535}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{65.5} \right)\left( \mathbf{50} \right)}{\left( \mathbf{17.76} \right)\mathbf{\times (6.811)}}\ \]

\[ \mathbf{r =}\frac{\mathbf{3353.5\ –\ 3275}}{\mathbf{120.96}}\ \]

\[ \mathbf{r =}\frac{\mathbf{78.5}}{\mathbf{120.96}}\ \]

\[ \mathbf{r = 0.6489}\ \]

Comment: Correlation Coefficient “r” 0.6489 indicates that there is a positive relation between two variables “X” and “Y”.

Q.3. Test the association

AttributesA1A2A3
B1201530
B2301835
B3352040

The value of Chi-Square at 5% level of significance 4 d.f is 9.488

Solution:

Solution:

AttributesA1A2A3Total
B120153065
B230183583
B335204095
Total8553105243

(i) Testing the Hypothesis

Ho: There is no Association between Attributes A’s and B’s.

H1: There is Association between Attributes A’s and B’s.

(ii) Level of Significance = α=0.05

(iii) Test Statistics is: \[ \mathbf{\chi}\mathbf{²}\mathbf{= \ }\mathbf{\sum}\frac{{\mathbf{(}\mathbf{fo}\mathbf{-}\mathbf{fe}\mathbf{)}}^{\mathbf{2}}}{\mathbf{fe}}\ \]

(iv) To find χ² first calculate expected frequencies fe:

Calculation of expected frequencies (fe)
AttributesAttributes 
A1A2A3Total 
B1\[ \frac{65 \times 85}{243} = 23\ \]\[ \frac{65 \times 53}{243} = 14\ \]\[ \frac{65 \times 105}{243} = 28\ \]65 
B2\[ \frac{83 \times 85}{243} = 29\ \]\[ \frac{83 \times 53}{243} = 18\ \]\[ \frac{83 \times 105}{243} = 36\ \]83 
B3\[ \frac{95 \times 85}{243} = 33\ \]\[ \frac{95 \times 53}{243} = 21\ \]\[ \frac{95 \times 105}{243} = 41\ \]95 
Total8553105243 

(v) Calculation of χ²:

Table B. Computation of χ²
fofefo-fe(fo-fe)²\[ \frac{\mathbf{(fo – fe)}^{\mathbf{2}}}{\mathbf{fe}}\ \]
2023-390.3913
1514110.07143
3028240.14286
3029110.03448
1818000
3536-110.02778
3533240.12121
2021-110.04762
4041-110.02439
  0.86107
    \[ \mathbf{\sum}\frac{\left( \mathbf{fo – fe} \right)^{\mathbf{2}}}{\mathbf{fe}}\mathbf{=}\ \]

(vi) Critical Region: Degree of Freedom d.f= (R-1)(C-1)

So d.f= (3-1)(3-1)=4

The Value of Tabulated χ²(0.05,4)=9.488

The Critical Region χ²cal>9.488

(vii) Conclusion: The calculated value of χ² is 0.86107 is less than the tabulated value of χ² 9.488 or 0.86107 falls in the acceptance region. We accept the Null Hypothesis Ho that there is no association between Attributes A’s and B’s.

Q.4. Compute index number for 2002 from the following data taking 2000 as base using:

(i) Laspeyre’s (ii) Paasche’s (iii) Fisher’s Method

Commodity20002002
PriceQuantityPriceQuantity
A51006120
B71201080
C10801280
D450560
E870880

Solution:

Commodity20002002
Price PoQuantity qoPrice P1Quantity q1\[ \mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{0}}\ \] \[ \mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}\ \] \[ \mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{o}}\ \] \[ \mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{1}}\ \]
A51006120500720600600
B712010808408001200560
C10801280800960960800
D450560200300250240
E870880560640560640
     2900342035702840
     \[ \mathbf{\sum}\mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{o}}\ \]\[ \mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}\ \]\[\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{o}}\ \]\[ \mathbf{\sum}\mathbf{p}_{\mathbf{o}}\mathbf{q}_{\mathbf{1}}\ \]

\[ \left( \mathbf{i} \right)\mathbf{Laspeyr}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index}\mathbf{\ 2002}\mathbf{=}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{0}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{0}}}\mathbf{\times \ 100}\ \]

\[ \mathbf{Laspeyr}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index}\mathbf{\ 2002}\mathbf{=}\frac{\mathbf{3570}}{\mathbf{2900}}\mathbf{\ \times \ 100 = \ 123.103}\ \]

\[ \left( \mathbf{ii} \right)\mathbf{Paasch}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index\ 2002}\mathbf{=}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{1}}}\mathbf{\times \ 100}\ \]

\[ \mathbf{Paasch}\mathbf{e}^{\mathbf{‘}}\mathbf{s\ Index\ 2002}\mathbf{=}\frac{\mathbf{3420}}{\mathbf{2840}}\mathbf{\times \ 100 = 120.42}\ \]

\[ \left( \mathbf{iii} \right)\mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 =}\sqrt{\mathbf{L \times P}}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 =}\sqrt{\mathbf{123.103 \times 120.42}}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2002 = 121.75}\ \]

Section II Business Mathematics

Q.5: If:

\[ \mathbf{A = \ }\begin{bmatrix}\mathbf{1} & \mathbf{4} & \mathbf{3} \\\mathbf{2} & \mathbf{1} & \mathbf{8} \\\mathbf{1} & \mathbf{1} & \mathbf{2} \\\end{bmatrix}\mathbf{\ and\ B = \ }\begin{bmatrix}\mathbf{2} & \mathbf{1} & \mathbf{2} \\\mathbf{0} & \mathbf{- 4} & \mathbf{8} \\\mathbf{6} & \mathbf{1} & \mathbf{4} \\\end{bmatrix}\mathbf{\ }\ \]

Calculate (i) A+B (ii) 2A – 3B (iii) AB

Solution

\[ \mathbf{A + B = \ }\begin{bmatrix} \mathbf{1 + 2} & \mathbf{4 + 1} & \mathbf{3 + 2} \\\mathbf{2 + 0} & \mathbf{1 + ( – 4)} & \mathbf{8 + 8} \\\mathbf{1 + 6} & \mathbf{1 + 1} & \mathbf{2 + 4} \\\end{bmatrix}\ \]

(i) \[ \mathbf{A + B = \ }\begin{bmatrix}\mathbf{3} & \mathbf{5} & \mathbf{5} \\\mathbf{2} & \mathbf{- 3} & \mathbf{16} \\\mathbf{7} & \mathbf{2} & \mathbf{6} \\\end{bmatrix}\ \]

(ii) \[ \mathbf{2}\mathbf{A = \ }\begin{bmatrix} \mathbf{2} & \mathbf{8} & \mathbf{6} \\\mathbf{4} & \mathbf{2} & \mathbf{16} \\\mathbf{2} & \mathbf{2} & \mathbf{4} \\\end{bmatrix}\ \]

\[ \mathbf{3}\mathbf{B = \ }\begin{bmatrix} \mathbf{6} & \mathbf{3} & \mathbf{6} \\\mathbf{0} & \mathbf{- 12} & \mathbf{24} \\\mathbf{18} & \mathbf{3} & \mathbf{12} \\\end{bmatrix}\ \]

\[ \mathbf{2}\mathbf{A – 3}\mathbf{B = \ }\begin{bmatrix}\mathbf{2 – 6} & \mathbf{8 – 3} & \mathbf{6 – 6} \\\mathbf{4 – 0} & \mathbf{2 + 12} & \mathbf{16 – 24} \\\mathbf{2 – 18} & \mathbf{2 – 3} & \mathbf{4 – 12} \\\end{bmatrix}\ \]

\[ \mathbf{2}\mathbf{A – 3}\mathbf{B = \ }\begin{bmatrix}\mathbf{- 4} & \mathbf{5} & \mathbf{0} \\\mathbf{4} & \mathbf{14} & \mathbf{- 8} \\\mathbf{- 16} & \mathbf{- 1} & \mathbf{- 8} \\\end{bmatrix}\ \]

(iii) \[ \mathbf{AB = \ }\begin{bmatrix}
\mathbf{1 \times 2 + 4 \times 0 + 3 \times 6} & \mathbf{1 \times 1 + 4( – 4) + 3 \times 1} & \mathbf{1 \times 2 + 4 \times 8 + 3 \times 4} \\
\mathbf{2 \times 2 + 1 \times 0 + 8 \times 6} & \mathbf{2 \times 1 + 1( – 4) + 8 \times 1} & \mathbf{2 \times 2 + 1 \times 8 + 8 \times 4} \\
\mathbf{1 \times 2 + 1 \times 0 + 2 \times 6} & \mathbf{1 \times 1 + 1( – 4) + 2 \times 1} & \mathbf{1 \times 2 + 1 \times 8 + 2 \times 4} \\
\end{bmatrix}\ \]

\[ \mathbf{AB = \ }\begin{bmatrix}\mathbf{2 + 0 + 18} & \mathbf{1 – 16 + 3} & \mathbf{2 + 32 + 12} \\\mathbf{4 + 0 + 48} & \mathbf{2 – 4 + 8} & \mathbf{4 + 8 + 32} \\\mathbf{2 + 0 + 12} & \mathbf{1 – 4 + 2} & \mathbf{2 + 8 + 8} \\\end{bmatrix}\ \]

\[ \mathbf{AB = \ }\begin{bmatrix}\mathbf{20} & \mathbf{- 12} & \mathbf{46} \\\mathbf{52} & \mathbf{6} & \mathbf{44} \\\mathbf{14} & \mathbf{- 1} & \mathbf{18} \\\end{bmatrix}\ \]

Q.6 (a) Solve the following simultaneous equations.

2x + y = -7

3x + 2y = -12

Solution

Multiply equation (i) by 2, we get

\[ \mathbf{4}\mathbf{x\ + \ 2}\mathbf{y\ = \ – 14}\ \]

\[ \mathbf{\pm 3}\mathbf{x\ \pm \ 2}\mathbf{y\ = \ \mp 12}\ \]

\[ \mathbf{x\ = \ – 2}\ \]

Put X = -2 in any equation to get y:

\[ \mathbf{2}\mathbf{x\ + \ y\ = \ – 7}\ \]

\[ \mathbf{2( – 2)\ + \ y\ = \ – 7}\ \]

\[ \mathbf{- 4\ + \ y\ = \ – 7}\ \]

\[ \mathbf{y\ = \ – 7\ + \ 4}\ \]

\[ \mathbf{y\ = \ – 3}\ \]

\[ \textbf{So x= -2, y = -3} \]

(b) Solve the quadratic equation 6x² – 5x – 6 = 0

Solution

\[ \mathbf{x =}\frac{\mathbf{- b \pm}\sqrt{\mathbf{b}^{\mathbf{2}}\mathbf{- 4}\mathbf{ac}}}{\mathbf{2}\mathbf{a}}\mathbf{\ where\ a = 6,\ b = \ – 5\ \&\ c = \ – 6}\ \]

\[ \mathbf{x =}\frac{\mathbf{- ( – 5) \pm}\sqrt{\left( \mathbf{- 5} \right)^{\mathbf{2}}\mathbf{- 4(6)( – 6)}}}{\mathbf{2(6)}}\ \]

\[ \mathbf{x =}\frac{\mathbf{5 \pm}\sqrt{\mathbf{25}\mathbf{+ 144}}}{\mathbf{12}}\ \]

\[ \mathbf{x =}\frac{\mathbf{5 \pm}\sqrt{\mathbf{169}}}{\mathbf{12}}\ \]

\[ \mathbf{x =}\frac{\mathbf{5 \pm 13}}{\mathbf{12}}\ \]

\[ \mathbf{x =}\frac{\mathbf{5 + 13}}{\mathbf{12}}\mathbf{=}\frac{\mathbf{18}}{\mathbf{12}}\mathbf{=}\frac{\mathbf{3}}{\mathbf{2}}\ \]

\[ \mathbf{x =}\frac{\mathbf{5 – 13}}{\mathbf{12}}\mathbf{=}\frac{\mathbf{8}}{\mathbf{12}}\mathbf{=}\frac{\mathbf{2}}{\mathbf{3}}\ \]

Q.7 Find out the compound amount and compound interest at the end of 3 years on a sum of Rs. 20,000 borrowed at 6% compounded annually.

Solution

\[ \mathbf{P\ = \ 20,000,\ n = 3,\ i = 0.06}\ \]

\[ \mathbf{F.V\ or\ Amount = \ P}\mathbf{(1 + i)}^{\mathbf{n}}\mathbf{\ }\ \]

\[ \mathbf{F.V\ or\ Amount = \ }\mathbf{20,000(1 + 0.06)}^{\mathbf{3}}\mathbf{\ }\ \]

\[ \mathbf{F.V\ or\ Amount = \ 20,000(1.191016)\ }\ \]

\[ \mathbf{F.V\ or\ Amount = 23820.32}\ \]

\[ \mathbf{Compound\ Interest = 23820.32 – 20000 = 3820.32}\ \]

Q.8 A 90 days Rs. 4,000, 7% interest bearing note dated April 4, was discounted on May 4, at a discount rate of 8%. What was the discounted value of the note? (Take 360 days in the year)

Solution

Total Days = 90

Days of April = 27

Days of May = 30

Days of June = 30

Days of July = 3

Maturity Date 3rd July

P = 4000, N = 3 months, I = (7/12)=0.5834 = (0.5834/100) = 0.005834

S.I = PIN

S.I = 4000 x 3 x 0.005834 = 70

Amount or future value of Note = 4000 + 70 = 4070

Discounted Date 4th May

Days of May = 27

Days of June = 30

Days of July = 3

Total Days = 60

Discount rate = 8% = 0.08

Principal Amount = 4070

Interest = 4070 x 0.08 = 325.6

\[ \mathbf{Interest = \ }\frac{\mathbf{325.6}}{\mathbf{12}}\mathbf{\ }\mathbf{\times}\mathbf{\ 2\ or\ 325.6}\left( \frac{\mathbf{60}}{\mathbf{360}} \right)\mathbf{= 54.26}\ \]

Discounted Value of interest bearing Note = 4070 – 54.26 = 4015.74

Business Statistics & Mathematics, Solved Paper 2009, Punjab University, BCOM, ADCI

Business Mathematics and Statistics, Solved Paper 2008, Punjab University, BCOM,ADCI

Business Mathematics and Statistics, Solved Paper 2007, Punjab University, BCOM,ADCI

Introduction to Statistics Basic Important Concepts

Measures of Central Tendency, Arithmetic Mean, Median, Mode, Harmonic, Geometric Mean

Correlation Coefficient, Properties, Types, Important Formulas for Correlation Coefficient

Leave a Comment

Your email address will not be published. Required fields are marked *