Business Mathematics and Statistics, Solved Paper 2007, Punjab University, BCOM,ADCI

Business Mathematics and Statistics, Solved Paper 2007, Punjab University, BCOM,ADCI

Here, we are going to solve the Paper of Business Mathematics and Statistics, Solved Paper 2007, Punjab University, BCOM, ADCI in which Measures of Central Tendency, Measures of Dispersion, Correlation & Regression, Index Numbers, Matrix, Arithmetic Progression, Geometric Progression, Simultaneous Linear Equations, Annuity, Quadratic Equation is discussed and solved.

Business Mathematics & Statistics, Solved Paper 2007, Punjab University, BCOM,ADCI

Q.1 Provide short answers for the following. Unnecessary details will be penalized. (a) Define median (b) What is probability? (c) What do you mean by principle of least square? (d) Define random variable. (e) Define range.

Answer:

(a) Median

Median is a positional average. It is most middle value of arrayed data after arranging it in ascending order. In ungrouped data, it is most central value whereas in grouped data, the formula is given below:

\[ \widetilde{X} = L + \frac{h}{f}\ \left( \frac{n}{2} – c \right)\ \]

Where L is lower Class Boundary, h = height of the class, f = frequency, n = ∑f & C = Cumulative Frequency

(b) Probability

Probability is a statistical measure and it is a measure of uncertainty which consists on occurrence or non-occurrence of an event. We can say that Probability calculates the chance of happening something or not happening something. Its answer always ranges between 0 and 1 both inclusive.

(c) Principle of Least-Square

Least square principle is a statistical principal which is used to find the best fitted line for a data set by minimizing the residuals. Least square regression equation is used for prediction in which one dependent variable and one or more than one independent variables are used.

If only one independent variable is used in the model, the model is called simple linear regression model whereas in multiple linear regression model, independent variables are more than one.

(d) Random Variable

Random variable is a type of variable whose value is not known. It may be discrete or continuous. It is discrete when it is countable and continuous when it is measurable.

(e) Range

Range is absolute measure of dispersion it is simply the difference between maximum value and minimum value of the variable. Its formula is Xm – X0.

Business Statistics

Section I

Q.2 Make a frequency distribution taking class as 1.20-1.49, 1.50-1.79, and so on:

3.20, 3.17, 2.87, 1.45, 1.49, 2.37, 2.86, 2.50, 1.67, 2.66, 3.18, 3.06, 2.56, 1.86, 1.99, 2.06, 2.45, 2.22, 3.10, 1.72, 2.04, 2.15, 2.45, 2.68, 2.75, 2.89, 1.14, 1.60, 1.54, 1.48

Solution:

Smallest Figure=1.14, Largest Figure = 3.20, h = 0.30

ClassesfrequencyTally
0.90—1.191I
1.20—1.493III
1.50—1.794IIII
1.80—2.094IIII
2.10—2.393III
2.40—2.696IIIIII
2.70—2.994IIII
3.0—3.295IIIII
 ∑f=30 

Q.3 Find Mean & Median of the following data:

Height(Inches)45–5050–5555–6060–6565–7070—75
No of Persons271218133

Solution

Height InchesfXfxC.f
45–50247.5952
50–55752.5367.59
55–601257.569021
60–651862.5112539
65–701367.5877.552
70–75372.5217.555
 55 3372.5 
 ∑f= ∑fx= 

\[ \mathbf{A.M\ }\overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum fx}}{\mathbf{\sum f}}\mathbf{= \ }\frac{\mathbf{3372.5}}{\mathbf{55}}\mathbf{= 61.31\ }\ \]

Selection of class for median \[ \frac{\mathbf{n}}{\mathbf{2}}\mathbf{=}\frac{\mathbf{55}}{\mathbf{2}}\mathbf{= 27.5\ falls\ in\ c.f\ of\ 39\ so\ model\ class\ is\ 60 – 65\ \ }\ \]

\[ \mathbf{Median = L + \ }\frac{\mathbf{h}}{\mathbf{f}}\left( \frac{\mathbf{n}}{\mathbf{2}}\mathbf{- \ C} \right)\mathbf{= 60 + \ }\frac{\mathbf{5}}{\mathbf{18}}\left( \frac{\mathbf{55}}{\mathbf{2}}\mathbf{- \ 21} \right)\mathbf{= 61.80}\ \]

Q.4 The following table gives the aptitude test scores and productivity indices of 10 workers selected at random estimate.

Aptitude Scores (X)60626570724853736582
Productivity index (Y)68606280854052626081

Calculate Correlation Coefficient between aptitude scores and productivity index

Solution:

Formula

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

S/NoXYXY
16068408036004624
26260372038443600
36562403042253844
47080560049006400
57285612051847225
64840192023041600
75352275628092704
87362452653293844
96560390042253600
108281664267246561
SUM650650432944314444002
 ∑X =∑Y =∑XY =∑X² =∑Y² =

\[ \overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum X}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{650}}{\mathbf{10}}\mathbf{= 65\ ,\ }\overline{\mathbf{Y}}\mathbf{=}\frac{\mathbf{\sum Y}}{\mathbf{n}}\mathbf{=}\frac{\mathbf{650}}{\mathbf{10}}\mathbf{= 65\ }\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{x}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\left\lbrack \frac{\mathbf{43144}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{65} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{4314.4 – 4225}}\ \]

\[ \mathbf{Sx =}\sqrt{\mathbf{89.4}}\ \]

\[ \mathbf{Sx = 9.455}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{y}^{\mathbf{2}}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

\[ \mathbf{Sy =}\sqrt{\left\lbrack \frac{\mathbf{44002}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{65} \right)^{\mathbf{2}} \right\rbrack}\mathbf{\ }\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{4400.2 – 4225}}\ \]

\[ \mathbf{Sy =}\sqrt{\mathbf{175.2}}\ \]

\[ \mathbf{Sy = 13.23}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{\sum xy}}{\mathbf{n}}\mathbf{- \ }\left( \frac{\mathbf{\sum x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum y}}{\mathbf{n}} \right)}{\mathbf{Sx \times Sy}}\ \]

\[ \mathbf{r =}\frac{\frac{\mathbf{43294}}{\mathbf{10}}\mathbf{- \ }\left( \mathbf{65} \right)\left( \mathbf{65} \right)}{\left( \mathbf{9.455} \right)\mathbf{\times (13.23)}}\ \]

\[ \mathbf{r =}\frac{\mathbf{4329.4\ –\ 4225}}{\mathbf{125.08}}\ \]

\[ \mathbf{r =}\frac{\mathbf{104.4}}{\mathbf{125.08}}\ \]

\[ \mathbf{r = 0.834} \textbf{(Positive Relation)} \]

Q.5 Compute index number from the following data using Fisher’s Ideal Index Formula.

Commodity19992000
PriceQuantityPriceQuantity
A12101512
B157205
C245209
D516514

Solution:

Commodity19992000
Price PoQuantity q0Price P1Quantity q1poqo p1q1p1q0 poq1
A12101512120180150144
B15720510510014075
C245209120180100216
D51651480708070
     425530470505
     ∑poqo=∑ p1q1=∑p1q0=∑poq1=

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2000 =}\sqrt{\left( \frac{\mathbf{\sum}\mathbf{p}\mathbf{1}\mathbf{qo}}{\mathbf{\sum}\mathbf{poqo}}\mathbf{\ \times \ }\frac{\mathbf{\sum}\mathbf{p}\mathbf{1}\mathbf{q}\mathbf{1}}{\mathbf{\sum}\mathbf{poq}\mathbf{1}} \right)}\mathbf{\ \times \ 100}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2000 =}\sqrt{\left( \frac{\mathbf{470}}{\mathbf{425}}\mathbf{\ \times \ }\frac{\mathbf{530}}{\mathbf{505}} \right)}\mathbf{\ \times \ 100}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2000 =}\sqrt{\left( \mathbf{1.106\ \times \ 1.05} \right)}\mathbf{\ \times \ 100}\ \]

\[ \mathbf{Fishe}\mathbf{r}^{\mathbf{‘}}\mathbf{s\ Ideal\ Index\ 2000 = 107.73}\ \]

Business Mathematics

Section II

Q.6 (a) A mobile company in its 3rd year of existence produce 6000 sets and 9000 sets in 5th year. What is the production of the company in the first year? (b) 0.323232….. = p/q, where p and q are integers find the values of p and q.

Solution: (a) Arithmetic Progression

\[ \mathbf{a}_{\mathbf{3}}\mathbf{= 6000\ Sets,\ }\mathbf{a}_{\mathbf{5}}\mathbf{= 9000\ Sets}\ \]

\[ \mathbf{a}_{\mathbf{3}}\mathbf{=}\mathbf{a}_{\mathbf{1}}\mathbf{+ 2}\mathbf{d}\ \]

\[ \mathbf{a}_{\mathbf{5}}\mathbf{=}\mathbf{a}_{\mathbf{1}}\mathbf{+ 4}\mathbf{d}\ \]

\[ \mathbf{6000 =}\mathbf{a}_{\mathbf{1}}\mathbf{+ 2}\mathbf{d\ (i)}\ \]

\[ \mathbf{9000 =}\mathbf{a}_{\mathbf{1}}\mathbf{+ 4}\mathbf{d\ (ii)}\ \]

Multiply Equation (i) by 2 & eliminate d, we get:

\[ \mathbf{12000 =}{\mathbf{2}\mathbf{a}}_{\mathbf{1}}\mathbf{+ 4}\mathbf{d}\ \]

\[ \mathbf{\pm 9000 =}\mathbf{\pm a}_{\mathbf{1}}\mathbf{\pm 4}\mathbf{d}\ \]

\[ \mathbf{a}_{\mathbf{1}}\mathbf{= 3000\ Sets}\ \]

Solution: (b) Geometric Progression

\[ \mathbf{a}_{\mathbf{1}}\mathbf{= 0.32,\ r = 0.01}\ \]

\[ \mathbf{S}_{\mathbf{\infty}}\mathbf{=}\frac{\mathbf{a}_{\mathbf{1}}}{\mathbf{1 – r}}\mathbf{=}\frac{\mathbf{0.32}}{\mathbf{1 – 0.01}}\mathbf{=}\frac{\mathbf{0.32}}{\mathbf{0.99}}\mathbf{=}\frac{\mathbf{32}}{\mathbf{99}}\mathbf{=}\frac{\mathbf{p}}{\mathbf{q}}\ \]

\[ \mathbf{p = 32\ \&\ q = 99}\ \]

Q.7 If A= \[ \begin{bmatrix}1 & 4 \\5 & 3 \\\end{bmatrix},\ B = \ \begin{bmatrix}0 & – 2 \\1 & 2 \\\end{bmatrix}\ \] Required: A+B =B+A

Solution:

\[ \mathbf{A + B =}\begin{bmatrix}\mathbf{1 + 0} & \mathbf{4 + ( – 2)} \\\mathbf{5 + 1} & \mathbf{3 + 2} \\\end{bmatrix}\mathbf{=}\begin{bmatrix}\mathbf{1} & \mathbf{2} \\\mathbf{6} & \mathbf{5} \\\end{bmatrix}\ \]

\[ \mathbf{B + A =}\begin{bmatrix}\mathbf{0 + 1} & \mathbf{- 2 + 4} \\\mathbf{1 + 5} & \mathbf{2 + 3} \\\end{bmatrix}\mathbf{=}\begin{bmatrix}\mathbf{1} & \mathbf{2} \\\mathbf{6} & \mathbf{5} \\\end{bmatrix}\ \]

Proved that A + B = B + A

Q.8 (a) Solve the following simultaneous equations 465x + 75y = 615, 75x + 465y = 1005 (b) Solve the quadratic equation \[ x^{2} – 5x + 6 = 0\ \]

Solution (a)

\[ 465x\ + \ 75y\ = \ 615\ \ \ \ \ (i)\ \]

\[ 75x\ + \ 465y\ = \ 1005\ \ \ (ii)\ \]

Multiply equation (i) by 75 and (ii) by 465 to eliminate x

\[ \mathbf{34875\ x\ + \ 5625\ y\ = \ 46125}\ \]

\[ \mathbf{\pm 34875\ x\ \pm 216225\ y\ = \ \pm 467325}\ \]

\[ \mathbf{- 210600}\mathbf{y = – 421200}\ \]

\[ \mathbf{y =}\frac{\mathbf{421200}}{\mathbf{210600}}\mathbf{= 2}\ \]

Put y = 2 into equation (i) to get the value of x:

\[ \mathbf{465}\mathbf{x\ + \ 75}\mathbf{y\ = \ 615\ \ \ \ \ (i)}\ \]

\[ \mathbf{465}\mathbf{x\ + \ 75(2)\ = \ 615}\ \]

\[ \mathbf{465}\mathbf{x = 615 – 150}\ \]

\[ \mathbf{465}\mathbf{x = 465}\ \]

\[ \mathbf{x =}\frac{\mathbf{465}}{\mathbf{465}}\mathbf{= 1}\ \]

\[ \mathbf{x = 1\ \&\ y = 2}\ \]

Prove

\[ 465x\ + \ 75y\ = \ 615\ \]

\[ 465(1)\ + \ 75(2)\ = \ 615\ \]

\[ 615\ = \ 615\ \]

Solution (b)

\[ x^{2} – 5x + 6 = 0\ \]

\[ Here\ a = 1,\ b = – 5\ \&\ c = 6\ \]

\[ x = \frac{- b \pm \sqrt{b^{2} – 4ac}}{2a}\ \]

\[ x = \frac{- ( – 5) \pm \sqrt{{( – 5)}^{2} – 4(1)(6)}}{2(1)}\ \]

\[ x = \frac{5 \pm \sqrt{25 – 24}}{2}\ \]

\[ x = \frac{5 \pm 1}{2}\ \]

\[ x = \frac{5 + 1}{2} = \frac{6}{2} = 3\ \]

\[ x = \frac{5 – 1}{2} = \frac{4}{2} = 2\ \]

\[ So x={2,3} \]

Q.9 Mr. Masood deposits Rs. 500 at the end of each quarter. So as to accumulate a sum of Rs. 10,000 to purchase a refrigerator. If the interest rate is 5% compounded quarterly, how many such quarterly deposits he will have to make.

Solution:

Data:

Ordinary Annuity

\[ \mathbf{R = 500,\ \ F.V = 10,000,\ I\ = 5\%\ quarterly =}\frac{\mathbf{5}}{\mathbf{4}}\mathbf{= 1.25\%\ =}\frac{\mathbf{1.25}}{\mathbf{100}}\mathbf{= 0.0125,\ n = ?}\ \]

Formula

\[ \mathbf{F.V = R}\left( \frac{\mathbf{(1 + i)}^{\mathbf{n}}\mathbf{- 1}}{\mathbf{i}} \right)\ \]

\[ \mathbf{10,000 = 500}\left( \frac{\mathbf{(1 + 0.0125)}^{\mathbf{n}}\mathbf{- 1}}{\mathbf{0.0125}} \right)\ \]

\[ \frac{\mathbf{10,000}}{\mathbf{500}}\mathbf{=}\left( \frac{\mathbf{(1 + 0.0125)}^{\mathbf{n}}\mathbf{- 1}}{\mathbf{0.0125}} \right)\ \]

\[ \mathbf{20 =}\left( \frac{\mathbf{(1 + 0.0125)}^{\mathbf{n}}\mathbf{- 1}}{\mathbf{0.0125}} \right)\ \]

\[ \mathbf{20 \times 0.0125 =}\mathbf{(1 + 0.0125)}^{\mathbf{n}}\mathbf{- 1}\ \]

\[ \mathbf{0.25 =}\mathbf{(1 + 0.0125)}^{\mathbf{n}}\mathbf{- 1}\ \]

\[ \mathbf{0.25 + 1 =}\mathbf{(1 + 0.0125)}^{\mathbf{n}}\ \]

\[ \mathbf{1.25 =}\mathbf{(1.0125)}^{\mathbf{n}}\ \]

Taking log on both sides

\[ \mathbf{log\ \ (1.25) = \ n\ log\ (1.0125)}\ \]

\[ \mathbf{0.09691 = \ n\ 0.005395}\ \]

\[ \mathbf{n =}\frac{\mathbf{0.09691}}{\mathbf{0.005395}}\mathbf{= 18\ Approx}\ \]

Introduction to Statistics Basic Important Concepts

Measures of Central Tendency, Arithmetic Mean, Median, Mode, Harmonic, Geometric Mean

Depreciation, Reasons of Depreciation, Methods of Depreciation, Straight Line/ Original Cost/Fixed Instalment Method, Diminishing/Declining/Reducing Balance Method.

Business Statistics Solved Paper FBISE 2017 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions

Business Statistics Solved Paper FBISE 2018 ICOM II, MCQS, Short Questions, Extensive Questions

Consignment Account, Consignor or principal, Consignee or agent, Complete Analysis with Journal Entries, Theoretical Aspect, MCQ’s and Practical Examples

Depreciation, Reasons of Depreciation, Methods of Depreciation, Straight Line/ Original Cost/Fixed Instalment Method, Diminishing/Declining/Reducing Balance Method.

Leave a Comment

Your email address will not be published. Required fields are marked *