Business Statistics Solved Paper FBISE 2016 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions

Business Statistics Solved Paper FBISE 2016 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions

In this blog post, I am going to discuss the paper of Business Statistics Solved Paper FBISE 2016 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions topics included are Introduction to StatisticsAverages, Index Numbers, Probability. Solved paper of Business Statistics Paper 2012 & solved paper of Business Statistics 2013Business Statistics 2015, Business Statistics 2016 are already published on the website.

bcfeducation.com

Business Statistics Solved Paper FBISE 2016 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions

bcfeducation.com

MCQS

Q.1 Circle the Correct Option i.e. A/B/C/D. Each Part Carries 1 Mark.
(i)Group data is also called:
 A.Raw DataB. Primary DataC. Secondary dataD. Qualitative data 
      
(ii)Number of Farz in five prayers is an example of:
 A.ConstantB. VariableC. AttributeD. Discrete Variable 
      
(iii)Total of relative frequencies is equal to:
 A.0B. 1C. 10D. 360 
      
(iv)The graph of cumulative frequency is:
 A.OgiveB. Pie ChartC. HistogramD. Historigram 
      
(v)The sum of Squared Deviations taken from mean is:
 A.MaximumB. MinimumC. 0D. None 
      
(vi)For a certain distribution, if ∑(X – 5) = 0, the value of mean is:
 A.0B. -5C. 5D. None 
      
(vii)Index Number for base year is:
 A.100B. 0C. 200D. 10 
      
(viii)Index Numbers are also called the barometers of:
 A.StatisticsB. EconomicsC. MathematicsD. None 
      
(ix)If P(A∩B)=0.25 and P(A) = 0.75 then P(A/B) is:
 A.1B. 0C. 1/3D. 3 
      
(x)Probability of an impossible event is:
 A.1B. 0C. 50%D. 1/10 

Short Questions

Q.2 Attempt any eight parts. The answer to each part should not exceed 3 to 4 lines. (8 x 3 = 24)

(i) Define descriptive and inferential statistics

Answer: Descriptive statistics deals with collection and presentation of data in various forms, such as tables, graphs and diagrams and findings averages and other measures of data.

Inferential statistics deals with the testing of hypothesis and inference about population parameter is called Inferential Statistics.

(ii) Define discrete and continuous variable.

Answer: In discrete variable, data has some specific value within a given range for example 2, 4, 6, 8 or 5, 10, 15, 20 etc. In discrete variable, data is countable such as number of persons, number of cars in town etc.

Whereas in continuous variable, data has any value within a given range for example 1,3, 7, 19, 65 or 2.5, 3.9, 5.9, 7.2 etc. In continuous variable, data is measurable such as height of the persons, weight of children etc.

(iii) Define frequency distribution and size of class interval.

Answer: Frequency distribution is simply the actual occurring of a certain number of a certain number on number between ranges. Width of the class or difference of upper and lower class boundary is called class interval.

(iv) Construct a simple bar diagram for:

Years19891990199119921993
Profit (Millions)1012182540

Solution:

Business Statistics Solved Paper FBISE 2016 2nd Annual ICOM II, MCQS, Short Questions, Extensive Questions

(v) The grades of a matriculation class are: Find Median grade.

GradesA+ABCD
f8122073
bcfeducation.com

Solution:

GradesfC.F
A+88
A1220
B2040
C747
D350
 50 
 ∑f or n = 

    \[  \mathbf{Median = \ }\frac{\mathbf{n + 1\ }}{\mathbf{2}}\mathbf{=}\frac{\mathbf{50 + 1\ }}{\mathbf{2}}\mathbf{= 25.5\ falls\ in\ cummulative\ frequency\ of\ 40\ so\ median\ is\ B}\ \]

(vi) For 10 observations ∑(x – 23) = – 17 find X̅.

Solution:

Data

A= 23, n = 10, D = -17

    \[  \overline{\mathbf{X}}\mathbf{= A + \ }\frac{\mathbf{\sum D}}{\mathbf{n}}\mathbf{= 23 + \ }\frac{\mathbf{- 17}}{\mathbf{10}}\mathbf{= 23 - 1.7 = 21.3}\ \]

(vii) Describe qualities of a good average.

Answer:

(1) It should be easy to calculate and simple to understand.

(2) It should be clearly defined by a mathematical formula.

(3) It should not be affected by extreme values.

(4) It should be based on all the observations.

(5) It should be capable of further mathematical treatment.

(6) It should have sample stability.

(viii) Define price index and a quantity index numbers.

Answer: Statistical estimator which calculates the percentage change in price with respect to time is called price index.

Statistical estimator which calculates the percentage change in quantity with respect to time is called quantity index.

(ix) Find index numbers for the following data using 1974 = 100

Years19701971197219731974
Prices9691110

Solution

YearsPrices

    \[ \mathbf{Price\ relatives =}\frac{\mathbf{Pn}}{\mathbf{Po}}\mathbf{\ x\ 100}\  \]

19709

    \[ \frac{\mathbf{9}}{\mathbf{10}}\mathbf{\ x}\mathbf{100 = 90}\  \]

19716

    \[ \frac{\mathbf{6}}{\mathbf{10}}\mathbf{\ x}\mathbf{100 = 60}\  \]

19729

    \[ \frac{\mathbf{6}}{\mathbf{10}}\mathbf{\ x}\mathbf{100 = 90}\  \]

197311

    \[ \frac{\mathbf{11}}{\mathbf{10}}\mathbf{\ x100 = 110}\  \]

197410100

Interpretation of the result

With respect to base year there is 10% reduction in price in year 1970 & 1972 and 40% reduction in 1971 whereas there is 10% inflation in 1973.

(x) A die is rolled. Find the probability that face is a complete square or it is a maximum face.

Solution:

    \[ \mathbf{Sample\ Space\ \eta}\left( \mathbf{s} \right)\mathbf{= \ }\mathbf{6}^{\mathbf{1}}\mathbf{= 6}\  \]

All possible outcomes = 1, 2, 3, 4, 5, 6

    \[ \left( \mathbf{i} \right)\mathbf{complete\ square\ 4\ or\ maximum\ 6 = \ \eta}\left( \mathbf{A} \right)\mathbf{= \ 2}\  \]

Probability

    \[  \mathbf{P}\left( \mathbf{A} \right)\mathbf{= \ }\frac{\mathbf{\eta(A)}}{\mathbf{\eta(S)}}\mathbf{=}\frac{\mathbf{2}}{\mathbf{6}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{3}}\ \]

(xi) Three coins are tossed. What is the probability that at least one head appear?

Solution:

    \[ \mathbf{Sample\ Space\ \eta}\left( \mathbf{s} \right)\mathbf{= \ }\mathbf{2}^{\mathbf{3}}\mathbf{= 8}\  \]

All possible outcomes

HHHHHTHTHTHH
TTTTTHTHTHTT

    \[ \left( \mathbf{i} \right)\mathbf{At\ least\ one\ head = \ \eta}\left( \mathbf{A} \right)\mathbf{= \ 7}\  \]

Probability

    \[ \mathbf{P}\left( \mathbf{A} \right)\mathbf{= \ }\frac{\mathbf{\eta(A)}}{\mathbf{\eta(S)}}\mathbf{=}\frac{\mathbf{7}}{\mathbf{8}}\mathbf{= 0.875}\  \]

Extensive Questions

Note: Attempt any two questions. All questions carry equal marks. (2×8=16)

Q.3 Find Mean, Median and Mode for the following data:

Class Limits3.0—3.94.0—4.95.0—5.96.0—6.97.0—7.98.0—8.9
Frequency13274030164

Solution

Class LimitsFrequency (f)Class BoundariesXfXC.F
3.0–3.9132.95–3.953.4544.8513
4.0–4.9273.95–4.954.45120.1540
5.0–5.9404.95–5.955.4521880
6.0–6.9305.95–6.956.45193.5110
7.0–7.9166.95–7.957.45119.2126
8.0–8.947.95–8.958.4533.8130 = ∑f or n
Sum130  729.5 
 ∑f or n=  ∑fX= 

    \[  \left( \mathbf{i} \right)\mathbf{\ A.M}\overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum fX}}{\mathbf{\sum f}}\mathbf{=}\frac{\mathbf{729.5}}{\mathbf{130}}\mathbf{= 5.611}\ \]

bcfeducation.com

    \[ \left( \mathbf{ii} \right)\mathbf{\ Median = L +}\frac{\mathbf{h}}{\mathbf{f}}\mathbf{(}\frac{\mathbf{n}}{\mathbf{2}}\mathbf{- \ C)}\  \]

Model Class = n/2 = 130/2 = 65 falls in C.f of 80 so data is:

L = 4.95, h = 1, f = 40, n/2 =130/2 = 65 & C = 40

    \[ \mathbf{Median = L +}\frac{\mathbf{h}}{\mathbf{f}}\left( \frac{\mathbf{n}}{\mathbf{2}}\mathbf{- \ C} \right)\mathbf{= \ Median = 4.95 +}\frac{\mathbf{1}}{\mathbf{40}}\left( \frac{\mathbf{130}}{\mathbf{2}}\mathbf{- \ 40} \right)\mathbf{= 4.95 +}\frac{\mathbf{25}}{\mathbf{40}}\mathbf{= 4.95 + 0.625\ }\mathbf{\ }\mathbf{\ }\  \]

    \[ \mathbf{Median = 5.575}\  \]

    \[ \left( \mathbf{iii} \right)\mathbf{\ Mode = L +}\frac{\mathbf{fm - f}\mathbf{1}}{\left( \mathbf{fm - f}\mathbf{1} \right)\mathbf{+ \ (fm - f}\mathbf{2)}}\mathbf{x\ h}\  \]

Model Class: Maximum frequency is 40 so data for model class is:

L = 4.95, fm = 40, f1 = 27, f2 = 30 & h = 1

    \[ \mathbf{Mode = 4.95 +}\frac{\mathbf{40 - 27}}{\left( \mathbf{40 - 27} \right)\mathbf{+ \ (40 - 30)}}\mathbf{x\ 1 = \ 4.95 +}\frac{\mathbf{13}}{\mathbf{13 + \ 10}}\mathbf{x\ 1}\  \]

    \[  \mathbf{Mode = 4.95 +}\frac{\mathbf{13}}{\mathbf{23}}\mathbf{x\ 1 = \ 4.95 +}\frac{\mathbf{13}}{\mathbf{23}}\mathbf{= 4.95 + 0.565 = 5.515}\ \]

Q.4 Construct the following weighted index number for 1981 on the basis of 1980:

(i) Laspeyres’s Index

(ii) Paasche’s Index

(iii) Fisher’s Ideal Index

  CommodityPricesQuantities
1980198119801981
A10122022
B881618
C561011
D4578

Solution

Article19801981 
Price (Po)Quantity (qo)Price   (P1)Quantity (q1)poqop1qop1q1poq1
A10201222200240264220
B816818128128144144
C51061150606655
D475828354032
Sum406463514451
 ∑poqo =∑p1qo =∑p1q1 =∑poq1 =

    \[ \mathbf{Laspeyr}\mathbf{e}^{\mathbf{'}}\mathbf{s\ Index\ 1981 =}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{0}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{0}}}\mathbf{x\ 100}\ \]

    \[  \mathbf{Laspeyr}\mathbf{e}^{\mathbf{'}}\mathbf{s\ Index\ 1981 =}\frac{\mathbf{463}}{\mathbf{406}}\mathbf{\ x\ 100 = \ 114.03}\ \]

    \[ \mathbf{Paasch}\mathbf{e}^{\mathbf{'}}\mathbf{s\ Index\ 1981 =}\frac{\mathbf{\sum}\mathbf{p}_{\mathbf{1}}\mathbf{q}_{\mathbf{1}}}{\mathbf{\sum}\mathbf{p}_{\mathbf{0}}\mathbf{q}_{\mathbf{1}}}\mathbf{x\ 100}\ \]

    \[ \mathbf{Paasch}\mathbf{e}^{\mathbf{'}}\mathbf{s\ Index\ 1981 =}\frac{\mathbf{514}}{\mathbf{451}}\mathbf{x\ 100 = 113.96}\ \]

    \[  \mathbf{Fishe}\mathbf{r}^{\mathbf{'}}\mathbf{s\ Ideal\ Index\ 1981 =}\sqrt{\mathbf{LxP}}\ \]

    \[ \mathbf{Fishe}\mathbf{r}^{\mathbf{'}}\mathbf{s\ Ideal\ Index\ 1981 =}\sqrt{\mathbf{114.03}\mathbf{x}\mathbf{113.96}}\  \]

    \[ \mathbf{Fishe}\mathbf{r}^{\mathbf{'}}\mathbf{s\ Ideal\ Index\ 1981 = 113.99}\  \]

Q.5 Two balls are selected at random from a bag containing 4 white and 2 black balls. Find the probability that:

(i) Both balls are white (ii) Both are of same colour (iii) Both are the different colour

Solution

White Balls = 4, Black Balls = 2, N = 4+2 = 6, r = 2

Sample Space

    \[ \mathbf{\eta}\left( \mathbf{s} \right)\mathbf{= \ }\begin{bmatrix}\mathbf{N} \\\mathbf{C}\\\mathbf{r}\\\end{bmatrix}\mathbf{=}\begin{bmatrix}\mathbf{6} \\\mathbf{C} \\\mathbf{2} \\\end{bmatrix}\mathbf{= 15}\ \]

(i) Probability that Both Balls are White

    \[ \textbf{P(Both White Balls)} = \frac{\begin{pmatrix}\mathbf{4} \\\mathbf{2} \\\end{pmatrix}\begin{pmatrix}\mathbf{2} \\\mathbf{0} \\\end{pmatrix}}{\begin{pmatrix}\mathbf{6} \\\mathbf{2} \\\end{pmatrix}}\mathbf{= \ }\frac{\mathbf{6}\mathbf{x}\mathbf{1}}{\mathbf{15}}\mathbf{=}\frac{\mathbf{6}}{\mathbf{15}}\mathbf{= 0.4}\ \]

bcfeducation.com

(ii) Both are of same colour

If both have white color then probability is same as above 0.4. Probability of both black is calculated below:

    \[  \textbf{P(Both Black) =} \frac{\begin{pmatrix}\mathbf{4} \\\mathbf{0} \\\end{pmatrix}\begin{pmatrix}\mathbf{2} \\\mathbf{2} \\\end{pmatrix}}{\begin{pmatrix}\mathbf{6} \\\mathbf{2} \\\end{pmatrix}}\mathbf{= \ }\frac{\mathbf{1}\mathbf{x}\mathbf{1}}{\mathbf{15}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{15}}\mathbf{= 0.067}\ \]

(iii) Both are the different colour

    \[ \textbf{P(Both are of different color) =} \frac{\begin{pmatrix}\mathbf{4} \\\mathbf{1} \\\end{pmatrix}\begin{pmatrix}\mathbf{2} \\\mathbf{1} \\\end{pmatrix}}{\begin{pmatrix}\mathbf{6} \\\mathbf{2} \\\end{pmatrix}}\mathbf{= \ }\frac{\mathbf{4}\mathbf{x}\mathbf{2}}{\mathbf{15}}\mathbf{=}\frac{\mathbf{8}}{\mathbf{15}}\mathbf{= 0.54}\ \]

bcfeducation.com

Business Statistics Solved Paper FBISE 2012 ICOM II, MCQS, Short Questions, Extensive Questions

Business Statistics Solved Paper FBISE 2013 ICOM II, MCQS, Short Questions, Extensive Questions

Business Statistics Solved Paper FBISE 2015 ICOM II, MCQS, Short Questions, Extensive Questions

Business Statistics Solved Paper FBISE 2016 ICOM II, MCQS, Short Questions, Extensive Questions

Consignment Account, Consignor or principal, Consignee or agent, Complete Analysis with Journal Entries, Theoretical Aspect, MCQ’s and Practical Examples

Depreciation, Reasons of Depreciation, Methods of Depreciation, Straight Line/ Original Cost/Fixed Instalment Method, Diminishing/Declining/Reducing Balance Method.

Introduction to Statistics Basic Important Concepts

Measures of Central Tendency, Arithmetic Mean, Median, Mode, Harmonic, Geometric Mean

Leave a Comment

Your email address will not be published. Required fields are marked *