Solved Paper Statistics I FBISE 2011

Solved Paper Statistics I FBISE 2011

Solved Paper Statistics I FBISE 2011, Dive into a comprehensive solution guide to the FBISE Statistics I 2011 paper! This blog post provides detailed explanations and step-by-step solutions for key topics like measures of central tendency, dispersion, data presentation, index numbers, correlation, regression, and time series. Whether you’re preparing for exams or reinforcing your understanding, this post is tailored to simplify concepts and help you excel in statistics. This topic is equally important for the students of statistics across all the major Boards and Universities such as FBISEBISERWPBISELHRMUDUPU, NCERT, CBSE & others & across all the statistics, business & finance disciplines.

Table of Contents

Solved Paper Statistics I FBISE 2011

Q.1 Circle the Correct Option i.e. A/B/C/D. Each Part Carries 1 Mark.

bcfeducation.com
Q.1 Circle the Correct Option i.e. A/B/C/D. Each Part Carries 1 Mark.
(i)The data which have already been collected by someone are called_______ data.
 ASecondaryBPrimary
 CArrayDNone of these
     
(ii)The number 143.9500 rounded off to the nearest tenth (one decimal place) is:
 A143.9B144.0
 C143.0D144
     
(iii)Weight of the earth is:
 ADiscrete variableBQualitative variable
 CContinuous VariableDDifficult to tell
     
(iv)The budgets of two families can be compared by:
 ASub divided rectanglesBPie-diagram
 CBoth A & BDHistogram
     
(v)A relative frequency distribution presents frequencies in terms of:
 AFractionsBWhole Numbers
 CPercentageDNone of these
     
(vi)If X̅ = 25, which of the following will be minimum?
 A∑(X – 27)²B∑(X – 25)²
 C∑(X – 22)²D∑(X + 25)²
     
(vii)Harmonic mean for any two positive numbers a and b is:
 A 

    \[ \frac{2}{a + b}\ \]

B 

    \[ \frac{\mathbf{2}\mathbf{ab}}{\mathbf{a}\mathbf{+}\mathbf{b}}\ \]

 C 

    \[ \frac{a + b}{2}\ \]

D 

    \[ \frac{a + b}{2ab}\ \]

     
(viii)To compare the variation of two or more than two series, we use:
 AMean absolute variationBVariance
 CCoefficient of variationDCorrected standard deviation
     
(ix)In a symmetrical distribution if Q1 = 4, Q3 = 12 then median is:
 A4B6
 C8DZero
     
(x)The first three moments of a distribution about the mean X̅ are 1, 4 and 0. The distribution is:
 ASymmetricalBSkewed to left
 CSkewed to the rightDNormal
     
(xi)The distribution is positively skewed if:
 AArithmetic Mean < ModeBArithmetic Mean > Mode
 CArithmetic Mean > MedianDBoth B and C
     
(xii)_________method is uses quantities consumed in the base period when computing a weighted index:
 ALaspeyre’sBPaasche’s
 CFisher’sDNone of these
     
(xiii)Prices used in the construction of consumer price index number are______prices.
 ARetailBWholesale
 CThe fixedDNone of these
     
(xiv)The mean of 10 observations is 10. All observations are increased by 10%. The mean of the increased observations shall be:
 A20B11
 C10D100
     
(xv)If all the actual and estimated values of y are the same on the regression line, the sum of squares of  errors will be:
 A0B11
 C10D100
     
(xvi)The value of the coefficient of correlation lies between:
 A0 and 1B0 and -1
 C-1 and +1D-2 and +2
     
(xvii)In time series a business cycle has:
 AOne phaseBTwo phases
 CFour PhasesDThree Phases
     

Short Question

bcfeducation.com

SECTION-B

Q.2 Attempt any fourteen parts.

(i) Differentiate between descriptive & Inferential Statistics.

Answer:

Descriptive Statistics

Descriptive statistics is a branch of statistics in which data is presented in the form of tables, graphs and charts. Measures of central tendency and dispersion is also a part of descriptive statistics. The aim of descriptive statistics is to present the data in informative way.

Example: Teacher gathering data of student’s marks, calculates averages, variation and presenting in graph.

Inferential Statistics

Inferential statistics is also a branch of statistics in which sample data is used to predict about population. Inferential statistics is used to predict the future trend and fluctuations. Key functions of inferential statistics is to make hypothesis, regression analysis etc.

(ii) What are the functions of statistics?

Answer:

Statistics play important role across different fields all around the world. Its key functions are given below:

Data Collection: Gathering data through surveys, Questionnaires, Researches.

Data Organization: Organizing raw data into organized form for further analysis.

Data Summarization: Calculate Central Tendencies and dispersion for meaningful insight.

Data Interpretation: Making pattern and trends from the data analysis and draw conclusions.

Data Comparison: Make data comparison through cross tabulation of ANOVA and hypothesis.

Prediction and Forecasting: To predict the future prediction and trends through inferential statistics.

Decision Making: Making timely decision with the help of data.

Quality Control: Ensuring quality control through using data techniques.

Customer Relationship: Statistics is a key tool to know the customer taste, demand and trends to make better relationship with customer.

bcfeducation.com

(iii) What are the common types of frequency distribution?

Answer:

  1. Grouped frequency distribution
  2. Ungrouped frequency distribution
  3. Cumulative frequency distribution
  4. Relative frequency distribution
  5. Cumulative frequency distribution

(iv)Differentiate between Historigram and Histogram.

Answer:

Histogram is a graph of frequency distribution in which class boundaries with suitable width is taken on X-axis where as respective frequencies are taken on Y-axis. In Histogram relative frequencies are shown in the shape of adjacent rectangular bars.

Whereas graph of Time Series or historical series is called historigram.

(v) A given stock was purchased at the following prices at various times, 20 shares at Rs. 8.20 a share, 100 shares at Rs 10.90 a share, 50 shares at Rs. 9.40 a share and 200 shares at Rs. 7.80 a share. Find the mean cost per share.

Solution:

Data

SharesPer unit priceTotal price
208.20 Per share164
10010.90 Per share1090
509.40 Per share470
2007.80 per share1560
Total Shares = 370 = n ∑x = 3284

    \[ Mean\ Cost\ per\ Share = \ \frac{\sum x}{n} = \ \frac{3284}{370} = 8.87\ \ \]

(vi) The mean and geometric mean of three numbers are 7 and 4, respectively. Find all the three numbers if mean of two numbers is 10.

Solution:

Let the three numbers be a, b, c, and if mean of two numbers is 10, then:

    \[ \frac{a + b}{2} = 10 \]

    \[ a + b = 20(i) \]

    \[ b = 20 - a \]

    \[ \frac{a + b + c}{3} = 7 \]

    \[ a + b + c = 21(ii) \]

    \[ c = 21 - a - b \]

    \[ \sqrt[3]{abc} = 4 \]

    \[ abc = 4^{3} = 64 \]

Take equation i & ii & get c

a + b = 20 (i)

a + b + c = 21 (ii)

C = 1

If c = 1 then ab = 64

ab = 64

a (20−a) =64

20a – a² – 64= 0

a2−20a+64=0

⟹ (a−16) (a−4) =0

⟹ {a,b,c}={16,4,1}

bcfeducation.com

(vii) What are the desirable qualities of a good average?

Answer:

(1) It should be easy to calculate and simple to understand.

(2) It should be clearly defined by a mathematical formula.

(3) It should not be affected by extreme values.

(4) It should be based on all the observations.

(5) It should be capable of further mathematical treatment.

(6) It should have sample stability.

(viii) The first four moments about X = 17.5 of a distribution are 0.3, 74, 45 and 12125. Find whether the distribution is leptokurtic or Platykurtic.

Solution:

    \[ \mathbf{b}\mathbf{2 = \ }\frac{\mathbf{m}\mathbf{4}}{\mathbf{m}\mathbf{2²}}\mathbf{=}\frac{\mathbf{12125}}{\mathbf{74²}}\mathbf{=}\frac{\mathbf{12125}}{\mathbf{5476}}\mathbf{= 2.21\ }\ \]

    \[ \mathbf{Since\ \beta}\mathbf{2} < 3\ so\ the\ distribution\ is\ platykurtic\ \]

bcfeducation.com

(ix) Given: Calculate Median, Mode, Q3 and D7.

Given:

No. of Children012345
No. of families471422126

Calculate Median, Mode, Q3 and D7.

bcfeducation.com

Solution:

No. of Children (X)No. of Families (f)C.f
044
1711
21425
32247
41259
5665
   

    \[ Median = \frac{n + 1}{2} = \frac{65 + 1}{2} = 33\ falls\ in\ c.f\ of\ 47\ so\ median\ is\ 3.\ \]

    \[ Mode = maximum frequency is 22 so mode is 3. \]

    \[ Q3 = \frac{3n + 1}{4} = \frac{3(65) + 1}{4} = 49\ falls\ in\ c.f\ of\ 59\ so\ Q3\ is\ 4.\ \]

    \[ D7 = \frac{7n + 1}{10} = \frac{7(65) + 1}{10} = 45.6\ falls\ in\ c.f\ of\ 59\ so\ D7\ is\ 4.\ \]

(x) Given n1=15, n2 = 25, n3 = 40, X̅1=15.8, X̅2=22.5, X̅3=30.2, S1=2.45, S2 = 4.65, S3 = 7.28. Compute combined coefficient of variation.

Solution

X̅1 = 15.8, n1 = 15, S1=2.45, S1² = 6
X̅2 = 22.5, n2 = 25, S2=4.65, S2² = 21.6225
X̅3 = 30.2, n3 = 40, S3=7.28, S3² = 52.9984

    \[ \overline{X}c = \ \frac{n1\ \overline{X}1 + n2\overline{X}2 + n3\overline{X}3}{n1 + n2 + n3}\ \]

    \[ \overline{X}c = \ \frac{(15)(15.8) + (25)(22.5) + (40)(30.2)}{15 + 25 + 40}\ \]

    \[ \overline{X}c = \frac{237 + 562.5 + 1208}{80} = \frac{2007.5}{80}\ \]

    \[ \overline{X}c = 25.09\ \ \]

Combined Variance

    \[ S²c = \ \frac{n1\lbrack S^{2}1 + \left( \overline{X}1 - \overline{X}c \right)^{2} + \ n2\lbrack S^{2}2 + \left( \overline{X}2 - \overline{X}c \right)^{2} + n3\lbrack S^{2}3 + \left( \overline{X}3 - \overline{X}c \right)^{2}}{n1 + n2 + n3}\ \]

    \[ S²c = \ \frac{15\lbrack 6 + (15.8 - 25.09)^{2} + \ 25\lbrack 21.6225 + (22.5 - 25.09)^{2} + 40\lbrack 52.9984 + (30.2 - 25.09)^{2}}{15 + 25 + 40}\ \]

    \[ S^{2}c = \ \frac{1384.5615 + \ 708.265 + 3164.42}{80}\ \]

    \[ S²c = \ \frac{5257.2465}{80} = 65.71\ \]

    \[ S²c = \ \sqrt{65.71} = 8.10\ \]

    \[ Combined\ C.V = \ \frac{Combined\ Standard\ Deviation}{Combined\ A.M}\ \]

    \[ Combined\ C.V = \frac{8.10}{25.09}\ \]

    \[ Combined\ C.V = 0.322\ \]

(xi) What will be the standard deviation and the variance in each of the following case? (i) 2X (ii) X + 2 (iii) 2X + 4 if Var(X) = 25

Solution:

(i) 2X

    \[ 2Var(X)\ \]

    \[ 2(25)\ = \ 50\ \]

    \[ S.D = \sqrt{50} = 7.07\ \]

(ii) X + 2

    \[ var(X)\ + \ 2\ \]

    \[ (25)\ + \ 2\ = \ 27\ \]

    \[ S.D = \sqrt{27} = 5.19\ \]

(iii) 2X + 4

    \[ 2\ var(X)\ + \ 4\ \]

    \[ 2(25)\ + \ 4\ = \ 54\ \]

    \[ S.D = \ \sqrt{54} = 7.34\ \]

bcfeducation.com

(xii) Compute chain index taking 1920 as base for the following data:

Year19201921192219231924192519261927192819291930
Price Relative100116120120137136149156137162149

Solution:

YearPrice RelativeLink Relative =

    \[ \frac{\mathbf{pn}}{\mathbf{pn - 1}}\mathbf{\times 100}\ \]

    \[ \mathbf{ChainIndex}\mathbf{\ = \ }\frac{\mathbf{PreviousChain}\mathbf{\times}\mathbf{CurrentL}\mathbf{.}\mathbf{R}}{\mathbf{100}}\ \]

1920100100100
1921116(116/100)×100=116(100×116)/100=116
1922120(120/116)×100=103.44(116×103.44)/100=119.99
1923120(120/120)×100=100(119.99×100)/100=119.99
1924137(137/120)×100=114.17(119.99×114.17)/100=136.99
1925136(136/137)×100=99.27(136.99×99.27)/100=135.98
1926149(149/136)×100=109.55(135.98×109.55)/100=148.96
1927156(156/149)×100=104.69(148.96×104.69)/100=155.94
1928137(137/156)×100=87.82(155.94×87.82)/100=136.94
1929162(162/137)×100=118.24(136.94×118.24)/100=161.91
1930149(149/162)×100=91.97(161.91×91.97)/100=148.90

(xiii) What are the important uses of index number?

Answer:

  • Index numbers are used in the fields of commerce, meteorology, labour, industrial, etc.
  • The index numbers measure fluctuations during intervals of time, group differences of geographical position of degree etc.
  • They are used to compare the total variations in the prices of different commodities in which the unit of measurements differs with time and price etc.
  • They measure the purchasing power of money.
  • They are helpful in forecasting the future economic trends.
  • They are used in studying difference between the comparable categories of animals, persons or items.
  • Index numbers of industrial production are used to measure the changes in the level of industrial production in the country.
  • Index numbers of import prices and export prices are used to measure the changes in the trade of a country.
  • The index numbers are used to measure seasonal variations and cyclical variations in a time series.
bcfeducation.com

(xiv) Given the following information: Compute Base year weighted & current year weighted price index numbers.

    \[ \sum p1qo = 41140,\ \sum poqo = 35310,\ \sum poq1 = 40048,\ \sum_{}^{}{p1q1 = 46707.}\ \]

Solution

    \[ Base\ year\ weighted\ Index = \ \frac{\sum p1qo}{\sum poqo}\ \times \ 100\ \]

    \[ Base\ year\ weighted\ Index = \ \frac{41140}{35310}\ \times 100 = 116.51\ \]

    \[ Current\ year\ weighted\ Index = \ \frac{\sum p1q1}{\sum poq1}\ \times 100\ \]

    \[ Current\ year\ weighted\ Index = \ \frac{46707}{40048} \times \ 100 = 116.62\ \]

(xv) What is meant by regression?

Answer:

Regression calculates the relationship between one dependent variables and one or more independent variables. Regression shows the effect of one unit change in an independent variable on the dependent variable.

(xvi) Given n = 10, ∑Dx = – 8, ∑Dy = 0, ∑D²x = 66, ∑D²y = 99, ∑DxDy = 72. Find r, bxy, byx.

Solution:

    \[ rxy = \ \frac{\sum DxDy - \ \frac{(\sum Dx)(\sum Dy)}{n}}{\sqrt{\left\lbrack \left{ \sum Dx^{2} - \frac{(\sum Dx)^{2}}{n} \right}\left{ \sum Dy^{2} - \frac{(\sum Dy)^{2}}{n} \right} \right\rbrack}}\ \]

    \[ rxy = \ \frac{72 - \ \frac{( - 8)(0)}{10}}{\sqrt{\left\lbrack \left{ 66 - \frac{( - 8)^{2}}{10} \right}\left{ 99 - \frac{(0)^{2}}{10} \right} \right\rbrack}}\ \]

    \[ rxy = \ \frac{72}{\sqrt{59.6\ x\ 99}} = \ \frac{72}{76.81} = 0.93\ \]

    \[ byx = \ \frac{\sum DxDy - \ \frac{(\sum Dx)(\sum Dy)}{n}}{\left( \sum Dx^{2} - \frac{(\sum Dx)^{2}}{n} \right)}\ \]

    \[ byx = \ \frac{72 - \ \frac{( - 8)(0)}{10}}{66 - \frac{( - 8)^{2}}{10}}\ \]

    \[ byx = \ \frac{72}{59.6}\ \]

    \[ byx = \ \frac{72}{76.81}\ \]

    \[ byx = 1.20\ \]

    \[ bxy = \ \frac{\sum DxDy - \ \frac{(\sum Dx)(\sum Dy)}{n}}{\left( \sum Dy^{2} - \frac{(\sum Dy)^{2}}{n} \right)}\ \]

    \[ bxy = \ \frac{72 - \ \frac{( - 8)(0)}{10}}{99 - \frac{(0)^{2}}{10}}\ \]

    \[ bxy = \ \frac{72}{99}\ \]

    \[ bxy = \ \frac{72}{76.81}\ \]

    \[ bxy = 0.7272\ \]

(xvii) Differentiate between Signal and Noise

bcfeducation.com

Answer:

A variation in any time series caused by sequence of systematic components is called “Signal” whereas A variation in any time series caused by sequence of unsystematic components is called “Noise”

Solved Paper Statistics I FBISE 2011
bcfeducation.com

(xviii) Fit a straight line to the following results for the years 1951-58 both inclusive ∑x = 0, ∑y = 2861.1, ∑x² = 168, ∑xy = 2215.5. Also compute trend values.

Solution:

Data:

∑x = 0, ∑y = 2861.1, ∑x² = 168, ∑xy = 2215.5, n = 8

Ŷ = a + bx

    \[ b = \ \frac{\sum XY}{\sum X^{2}}\&\ a = \ \frac{\sum Y}{n}\ \]

    \[ a = \ \frac{\sum Y}{n} = \frac{2861.1}{8} = 357.6375\ \]

    \[ b = \ \frac{\sum XY}{\sum X^{2}} = \frac{2215.5}{168} = 13.1875\ \]

Ŷ = a + bx

Ŷ = 357.6375 + 13.1875x

Calculation of Trend Values

YearXŶ = 357.6375 + 13.1875x
1951-7Ŷ = 357.6375 + 13.1875(-7) = 265.325
1952-5Ŷ = 357.6375 + 13.1875(-5) = 291.7
1953-3Ŷ = 357.6375 + 13.1875(-3) = 318.075
1954-1Ŷ = 357.6375 + 13.1875(-1) = 344.45
1955+1Ŷ = 357.6375 + 13.1875(1) = 370.825
1956+3Ŷ = 357.6375 + 13.1875(3) = 397.2
1957+5Ŷ = 357.6375 + 13.1875(5) = 423.575
1958+7Ŷ = 357.6375 + 13.1875(7) = 449.95

(xix) Find 4-years moving averages cantered from the following data:

Year1990199119921993199419951996
Y458865599581788

Solution:

YearValues4 Years Moving Total2 Values Moving Total4 Years Centered Moving Average
199045   
199188
  257
199265 56470.5
  307  
199359 60775.875
  300  
199495 1323165.375
  1023  
199581 
1996788
bcfeducation.com
Statistics I HSSC I FBISE Solved Paper 2023, MCQS, Short Questions, Extensive Questions

Extensive Questions

Q.3 Calculate: (i) Mean Deviation from Median, (ii) Coefficient of Variation. From the following frequency distribution:

Max: Load (Short tons)No of cables
9.3—9.72
9.8—10.25
10.3—10.712
10.8—11.217
11.3—11.714
11.8—12.26
12.3—12.73
12.8—13.21

Solution:

Max: Load (Short tons)No of cables (f)Class BoundariesXfXfX²C.f|X-median|f|X-median|
9.3—9.729.25—9.759.519180.521.573.14
9.8—10.259.75—10.25105050071.075.35
10.3—10.71210.25—10.7510.51261323190.576.84
10.8—11.21710.75—11.25111872057360.071.19
11.3—11.71411.25—11.7511.51611851.5500.436.02
11.8—12.2611.75—12.251272864560.935.58
12.3—12.7312.25—12.7512.537.5468.75591.434.29
12.8—13.2112.75—13.251313169601.931.93
         
 60  665.57413.75  34.34
 ∑f=  ∑fX=∑fX²=  
f|X-median| =

    \[ A.M\ \overline{X} = \frac{\sum fx}{\sum f}\ = \frac{665.5}{60}\ = 11.09\ \]

    \[ Median = L + \frac{h}{f}\left( \frac{n}{2} - C \right)\ \]

    \[ Median = 10.75 + \frac{0.5}{17}(30 - 19)\ \]

    \[ Median = 10.75 + \frac{5.5}{17} = 11.07\ \]

    \[ \frac{n}{2} = \frac{60}{2} = 30\ so\ model\ class\ is\ 10.75 - 11.25\ \]

    \[ S.D = \ \sqrt{\left\lbrack \frac{\sum fx^{2}}{\sum f} - \ \left( \frac{\sum fx}{\sum f} \right)^{2} \right\rbrack}\ \]

    \[ S.D = \sqrt{\left\lbrack \frac{7413.75}{60} - \ \left( \frac{665.5}{60} \right)^{2} \right\rbrack}\ \]

    \[ S.D = \sqrt{123.5625 - 122.9881}\ \]

bcfeducation.com

    \[ S.D = 0.757\ \]

    \[ (i)M.D\ through\ Median = \frac{\sum f|X - median|}{median}\ \ \]

    \[ M.D\ through\ Median = \frac{34.34}{11.07}\ \ \]

    \[ M.D\ through\ Median = 3.10\ \]

    \[ (ii)C.V = \left( \frac{S.D}{mean} \right)100\ \ \]

    \[ C.V = \frac{0.757}{11.09} \times 100\ = 6.82\ \]

Q.4 Construct Consumer Price Index of 1980 on the basis of 1978 using: (i) Aggregative Method (ii) Family Budget Method

ArticlesQuantity ConsumedUnit of PricePrices (Rs.)
19781980
Rice6 maundsPer Seer66.50
Wheat10 maundsPer maund3540
Grain3 maundsPer maund6090
Pulses5 maundsPer maund120144
Ghee5 SeersPer Seer810
Sugar1 maundPer maund240300
bcfeducation.com

Solution:

Unit of PriceArticleQuantity Consumed (qo)Prices (Rs.)P1qopoqo = WI=(P1/Po)  × 100 WI
1978(Po)1980(P1)
Per Seer(6×40)Rice24066.515601440108.33333156000
Per maundWheat103540400350114.2857140000
Per maundGrain3609027018015027000
Per maundPulses512014472060012072000
Per SeerGhee581050401255000
Per maundSugar124030030024012530000
         
     33002850742.61905330000
     ∑p1qo=∑poqo=∑I=∑WI=

    \[ \left( \mathbf{i} \right)Aggregative\ Index\ 1980 = \frac{\sum P1qo}{\sum Poqo}\ \times \ 100\ \]

    \[ Aggregative\ Index\ 1980 = \ \frac{3300}{2850}\ \times \ 100\ \]

    \[ Aggregative\ Index\ 1980 = 115.78\ Approx\ \]

    \[ \left( \mathbf{ii} \right)Family\ budget\ Method\ 1980 = \frac{\sum WI}{\sum W}\ \ \]

    \[ Family\ budget\ Method\ 1980 = \ \frac{330000}{2850}\ \ \]

    \[ Family\ budget\ Method\ 1980 = 115.78\ Approx\ \]

bcfeducation.com

Q.5 The following table shows the ages (X) and systolic blood pressure (Y) of 12 women..

 (X) (Y)
56147
42125
72160
36118
63149
47128
55150
49145
38115
42140
68152
60155
  • Compute Regression line of Y on X & X on Y
  • Compute Coefficient of Correlation between X & Y.
  • Show that

        \[ r = \ \sqrt{byx\ .bxy}\ \]

Solution:

(X) (Y)XY
561473136216098232
421251764156255250
7216051842560011520
361181296139244248
631493969222019387
471282209163846016
551503025225008250
491452401210257105
381151444132254370
421401764196005880
6815246242310410336
601553600240259300
     
62816843441623882289894
∑X =∑Y =∑X² =∑Y² =∑XY =

    \[ \overline{\mathbf{X}}\mathbf{=}\frac{\mathbf{\sum}\mathbf{x}}{\mathbf{n}}\mathbf{= \ }\frac{\mathbf{628}}{\mathbf{12}}\mathbf{=}\mathbf{52.34}\ \]

    \[ \overline{\mathbf{Y}}\mathbf{=}\frac{\mathbf{\sum}\mathbf{y}}{\mathbf{n}}\mathbf{= \ }\frac{\mathbf{1684}}{\mathbf{12}}\mathbf{=}\mathbf{140.34}\ \]

    \[ \mathbf{Sx}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{x}^{\mathbf{2}}}{\mathbf{n}}\mathbf{-}\mathbf{\ }\left( \frac{\mathbf{\sum}\mathbf{x}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

    \[ \mathbf{Sx}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{34416}}{\mathbf{12}}\mathbf{-}\mathbf{\ }\left( \mathbf{52.34} \right)^{\mathbf{2}} \right\rbrack}\ \]

    \[ \mathbf{Sx =}\sqrt{\mathbf{2868 - 2739.47}}\ \]

    \[ \mathbf{Sx}\mathbf{=}\sqrt{\mathbf{128.53}}\ \]

    \[ \mathbf{Sx}\mathbf{=}\mathbf{11.33}\ \]

    \[ \mathbf{Sy}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{\sum}\mathbf{y}^{\mathbf{2}}}{\mathbf{n}}\mathbf{-}\mathbf{\ }\left( \frac{\mathbf{\sum}\mathbf{y}}{\mathbf{n}} \right)^{\mathbf{2}} \right\rbrack}\ \]

    \[ \mathbf{Sy}\mathbf{=}\sqrt{\left\lbrack \frac{\mathbf{238822}}{\mathbf{12}}\mathbf{-}\mathbf{\ }\left( \mathbf{140.34} \right)^{\mathbf{2}} \right\rbrack}\ \]

    \[ \mathbf{Sy =}\sqrt{\mathbf{19901.84 - 19695.31}}\ \]

    \[ \mathbf{Sy}\mathbf{=}\sqrt{\mathbf{206.53}}\ \]

    \[ \mathbf{Sy}\mathbf{=}\mathbf{14.37}\ \]

    \[ \mathbf{r}\mathbf{=}\frac{\frac{\mathbf{\sum}\mathbf{xy}}{\mathbf{n}}\mathbf{-}\left( \frac{\mathbf{\sum}\mathbf{x}}{\mathbf{n}} \right)\left( \frac{\mathbf{\sum}\mathbf{y}}{\mathbf{n}} \right)}{\mathbf{Sx}\mathbf{.}\mathbf{Sy}}\ \]

    \[ \mathbf{r}\mathbf{=}\frac{\frac{\mathbf{89894}}{\mathbf{12}}\mathbf{-}\left( \frac{\mathbf{628}}{\mathbf{12}} \right)\left( \frac{\mathbf{1684}}{\mathbf{12}} \right)}{\left( \mathbf{11.33} \right)\mathbf{(}\mathbf{14.37}\mathbf{)}}\ \]

    \[ \mathbf{r}\mathbf{=}\frac{\mathbf{7491.17}\mathbf{-}\mathbf{7345.3956}}{\mathbf{162.8121}}\ \]

    \[ \mathbf{r}\mathbf{=}\frac{\mathbf{145.7744}}{\mathbf{162.8121}}\ \]

    \[ \mathbf{r}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{89}\ \]

bcfeducation.com

Positive Relation

    \[ \mathbf{bxy}\mathbf{=}\mathbf{r}\left( \frac{\mathbf{\sigma x}}{\mathbf{\sigma y}} \right)\ \]

    \[ \mathbf{bxy}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{89}\left( \frac{\mathbf{11.33}}{\mathbf{14.37}} \right)\ \]

    \[ \mathbf{bxy}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{89}\left( \mathbf{0}\mathbf{.}\mathbf{79} \right)\ \]

    \[ \mathbf{bxy}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{7031}\ \]

    \[ \mathbf{byx}\mathbf{=}\mathbf{r}\left( \frac{\mathbf{\sigma y}}{\mathbf{\sigma x}} \right)\  \]

    \[ \mathbf{byx}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{89}\left( \frac{\mathbf{14.37}}{\mathbf{11.33}} \right)\  \]

    \[ \mathbf{byx}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{89}\left( \mathbf{1.268} \right)\  \]

    \[ \mathbf{byx}\mathbf{=}\mathbf{1.12852}\ \]

Regression Equation Y on X

    \[ \mathbf{(Y\  - \ }\overline{\mathbf{Y}}\mathbf{) = \ byx\ (X\  - \ }\overline{\mathbf{X}}\mathbf{)}\ \]

    \[ (Y\ -\ 140.34)\  = \ 1.12852(X\ -\ 52.34)\ \]

    \[ (Y\ -\ 140.34)\  = \ 1.12852X-\ 59.07\ \]

    \[ Y\ \  = \ 1.12852X-\ 59.07 + \ 140.34\ \]

    \[ Y\ \  = \ 1.12852X\  + \ 81.27\ \]

    \[ \widehat{\mathbf{Y}}\mathbf{\  = \ 81.27\  + \ 1.12852x}\ \]

bcfeducation.com

Regression Equation X on Y

    \[ (X\  - \ \overline{X}) = \ bxy\ (Y\  - \ \overline{Y})\ \]

    \[ (X\ -\ 52.34)\  = \ 0.7031(Y\ -\ 140.34)\ \]

    \[ (x\ -\ 52.34)\  = \ 0.7031Y-\ 98.67\ \]

    \[ X\ \  = \ 0.7031Y-\ 98.67 + \ 52.34\ \]

    \[ X\ \  = \ 0.7031Y\ -46.33\ \]

    \[ \widehat{\mathbf{X}}\mathbf{\  = \  - 46.33\  + \ \ 0.7031}\mathbf{y}\ \]

    \[ r = \ \sqrt{byx\ .bxy}\ \]

    \[ r = \ \sqrt{(1.12852).(0.7031)}\ \]

    \[ r = \ \sqrt{0.79346}\ \]

    \[ \mathbf{r = \ 0.89}\ \]

bcfeducation.com

Statistics I Solved Paper FBISE 2008

Statistics I Solved Paper FBISE 2009

Statistics I Solved Paper FBISE 2010

Statistics I Solved Paper FBISE 2023

Leave a Comment

Your email address will not be published. Required fields are marked *